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Abstract: Recent work has shown that compactifications of F-theory provide a poten-
tially attractive phenomenological scenario. The low energy characteristics of F-theory
GUTs consist of a deformation away from a minimal gauge mediation scenario with a high
messenger scale. The soft scalar masses of the theory are all shifted by a stringy effect
which survives to low energies. This effect can range from 0 GeV up to ∼ 500 GeV. In
this paper we study potential collider signatures of F-theory GUTs, focussing in particular
on ways to distinguish this class of models from other theories with an MSSM spectrum.
To accomplish this, we have adapted the general footprint method developed recently for
distinguishing broad classes of string vacua to the specific case of F-theory GUTs. We show
that with only 5 fb−1 of simulated LHC data, it is possible to distinguish many mSUGRA
models and low messenger scale gauge mediation models from F-theory GUTs. Moreover,
we find that at 5 fb−1, the stringy deformation away from minimal gauge mediation pro-
duces observable consequences which can also be detected to a level of order ∼ ±80 GeV.
In this way, it is possible to distinguish between models with a large and small stringy
deformation. At 50 fb−1, this improves to ∼ ±10 GeV.
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1 Introduction

Bridging the gap between string theory and experiment would at first appear to require
enormous energy scales to probe more intrinsically “stringy phenomena”. This is com-
pounded by the fact that a given low energy theory may possess several completions at
higher energy scales. Indeed, at low energy scales string theory can always be represented
by an effective field theory.

On the other hand, there is no guarantee that a given effective field theory will have a
UV completion in string theory. Thus, while a direct confirmation of the theory may not
be possible, indirect manifestations of the theory are likely to be present at lower energy
scales. In particular, although a given string compactification may reduce to a well-defined
effective field theory, the specific choice of the field content, mass scales and parameters
will very much depend on the details of the compactification. Seemingly contrived field
theories may have a very natural stringy origin. In this way, a class of string theory
compactifications can provide a preferred set of effective field theories, each with a specific
class of potential observable signatures.

From the perspective of the string theorist, the primary challenge is then to deter-
mine a set of criteria which select a class of UV completions of the Standard Model of
particle physics. One well-motivated possibility is to assume the existence of low scale su-
persymmetry with the spectrum of the MSSM, and the presence of a Grand Unified Theory
(GUT) at high energy scales MGUT ∼ 1016 GeV. This has typically been taken as evidence
for the existence of an extra unification structure near the Planck scale, which is indeed
very suggestive of the potential relevance of stringy physics. Thus, in an indirect way, the
requirement of GUT scale physics and the existence of supersymmetry manifested at low
scales provides a first criterion for vacuum selection.

Although the GUT scale is very close to the Planck scale, there is still a small hierarchy
in that MGUT/Mpl ∼ 10−3. In [1] it was proposed that the smallness of this parameter
be promoted to the additional selection criterion that a candidate vacuum should admit
a limit where the dynamics of quantum gravity can in principle decouple (as Mpl → ∞).
A surprising consequence of the existence of both a GUT and a decoupling limit is that
it imposes strong restrictions on the content of the low energy theory. In the particular
context of compactifications of a strongly coupled formulation of type IIB string theory
known as F-theory, this question has been studied. See [1–21] for recent work on F-theory
based models of Grand Unified Theories (F-theory GUTs). Returning to the form of the
low energy theory, bottom up considerations also serve to constrain the details of the
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compactification. Proceeding iteratively, it was shown in [4, 5] that the sparticle spectrum
is constrained to a remarkable degree.

From the perspective of the low energy theory, there are two novel features associated
with the supersymmetry breaking sector of F-theory GUTs. First, because there exists
a limit where gravity decouples, F-theory GUTs are incompatible with gravity mediated
supersymmetry breaking, but rather, most naturally accommodate gauge mediated su-
persymmetry breaking (GMSB). F-theory GUTs constitute a deformation away from the
minimal GMSB scenario both in terms of the most natural input energy scales, and in the
form of additional contributions to the soft mass terms of the theory.

Recall that in minimal GMSB, the effects of supersymmetry breaking are parameter-
ized by the number of vector-like pairs of messengers in the 5⊕5, N5, and the characteristic
mass scale for gauginos, Λ, such that the mass of the gaugino at a low energy scale is:

mgaugino ∼ N5
α

4π
Λ ∼ N5

α

4π
F

Mmess
, (1.1)

where α is shorthand for the fine structure constants of the various Standard Model gauge
groups,

√
F is the scale of supersymmetry breaking, and Mmess is the mass of the messenger

fields communicating supersymmetry breaking to our sector. From the low energy point
of view, it is most natural to take the messenger scale as low as possible without running
into conflict with experiments so that

√
F ∼ Mmess ∼ 105 GeV. By contrast, in F-theory

GUTs the scale of supersymmetry breaking is typically much higher, and is given by√
F ∼ 108−109 GeV, and the messenger scale is Mmess ∼ 1012 GeV. Even though such high

values are allowed from the viewpoint of mGMSB, there is nothing distinguished about such
energy scales based on low energy considerations. Rather, the requirement that this model
admit a UV completion within F-theory requires an increase in the scale of supersymmetry
breaking. This is because the µ term is generated by GUT scale dynamics so that only a
small range of scales for supersymmetry breaking will generate a value for the µ parameter
near the scale of electroweak symmetry breaking [4].

Besides motivating a specific high energy scale for the masses of the messenger fields,
there are also more stringy manifestations of F-theory GUTs which survive to low energies.
These effects constitute a predictive and measurable shift away from the soft supersymmetry
breaking terms of the minimal gauge mediation scenario. This deformation is due to the
fact that in any quantum theory of gravity, global symmetries must be gauged, or will be
violated by Planck scale effects. One such gauge symmetry which is broken at the string
scale persists as a global U(1)PQ Peccei-Quinn symmetry at lower energies. In the low
energy theory, this global U(1) symmetry is anomalous and so would seemingly lead to an
inconsistent theory if gauged. In string theory, however, such anomalies are cancelled via
the generalized Green-Schwarz mechanism. What is particularly interesting is that because
the fields of the MSSM and supersymmetry breaking sector are both charged under this
symmetry, heavy U(1)PQ gauge boson exchange generates additional contributions to the
soft scalar masses. Because the charges of all of the MSSM fields are constrained by the
existence of higher GUT symmetries, this amounts to a predictive, and stringy prediction
for the expected shifts in the mass spectrum away from the minimal gauge mediation
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scenario. Typically, the size of these mass shifts are comparable to the total mass of the
sleptons generated by gauge mediation effects. Therefore this stringy “PQ deformation”
will have measurable consequences.

The aim of the present paper is to study collider signatures of F-theory GUTs, and in
particular, to establish whether it is possible to distinguish between other models with an
MSSM spectrum, but with different input Lagrangians at the TeV scale. In this regard, our
goal is to view the LHC as a tool by which one can differentiate between distinct extensions
of the Standard Model.

One particularly promising way to distinguish between distinct models with only lim-
ited integrated luminosity is based on the general footprint method developed in [22, 23].
This consists of creating two-dimensional plots of various candidate signatures and scan-
ning over the parameters in a given class of models. Performing such a scan for two classes
of models, it is then possible to determine a set of signatures which can distinguish between
distinct models. This can then be supplemented by more quantitative measures such as
chi-square like fits to establish the distinguishability of two models. To minimize the ef-
fects of Standard Model background, we have typically selected events which contain either
a hard jet, or some other hard process which is difficult to replicate by purely Standard
Model effects.

In this paper, we show that with 5 fb−1 of simulated LHC data (which is lower than
the expected annual luminosity for the LHC in the first three years), it is possible to
distinguish F-theory GUTs from other models with an MSSM sparticle spectrum. In F-
theory GUTs, the bino or the lightest stau typically corresponds to a quasi-stable NLSP
which decays outside the detector. Because reconstruction of the charged track left by a
stau is a relatively easy signature to detect, in this paper we will primarily focus on the
case of a bino NLSP. Within this class of F-theory GUT models, we scan over the various
parameters of the theory, and compare the signals obtained with those of mSUGRA models
with mass spectra similar to those of F-theory GUTs. Scanning over many such mSUGRA
models, we show that there are indeed signatures which can reliably distinguish between
F-theory GUTs and such models.1 In a certain sense, this is to be expected, because
when the squark (resp. slepton) mass spectra are similar to those of F-theory GUTs, the
slepton (resp. squark) masses are typically different. Moreover, in those cases where both
the squark and slepton spectra are similar, the corresponding branching fractions between
the two classes of models are different enough that it is still possible to develop a class of
signatures which can distinguish between F-theory GUTs and mSUGRA models. We also
find that is possible to distinguish F-theory GUTs from minimal gauge mediation scenarios
with a low messenger scale.

At the next stage of analysis, we show that with the same integrated luminosity, it is
possible to distinguish between high scale minimal gauge mediation models, and F-theory
GUTs. This amounts to showing that the effects of the F-theoretic PQ-deformation are
observable at the LHC. To this end, we first show that it is possible to determine a class

1For mSUGRA models with large A-terms, only F-theory GUTs with one messenger can be distinguished

given the limited signatures and integrated luminosity.
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of signatures which are sensitive to N5 and Λ. Having fixed these values, we next show
that in the case of single messenger models, it is indeed possible to roughly distinguish
between models with distinct values of the PQ deformation up to a level of ∼ ±80 GeV with
5 fb−1 of integrated luminosity. We find that this sensitivity improves to an uncertainty of
∼ ±10 GeV with 50 fb−1 of simulated LHC data. In the case of multiple messenger models,
the effects of the PQ deformation are less pronounced in the regime where the bino is the
NLSP. As a consequence, distinguishing between models in this range of models appears
more challenging.

The organization of the rest of this paper is as follows. In section 2 we provide ad-
ditional background on F-theory GUTs. This includes a more detailed description of the
parameter space of F-theory GUTs, and the defining characteristics of F-theory GUTs
which are relevant for collider studies. This is followed in section 3 by an analysis of signa-
tures which can distinguish between F-theory GUTs, mSUGRA models, and low messenger
scale minimal gauge mediation models. Next, in section 4 we study the extent to which it is
possible to distinguish between distinct F-theory GUTs. Section 5 contains our conclusions.

2 F-theory at the LHC

In this section we define the class of models which correspond to F-theory GUTs, and in
particular, the low energy content of relevance for collider studies. We refer the interested
reader to [4, 5] for further details on the reasoning by which a narrow and predictive range
of parameters is determined. For further details of F-theory GUTs, we refer the interested
reader to [1–21].

At low energies, an F-theory GUT corresponds to a deformation away from a minimal
gauge mediation scenario.2 The relatively high messenger scale required to generate a
viable µ term implies that in this class of models, the LSP is the gravitino with a mass
of ∼ 10− 100 MeV, and the NLSP is either a quasi-stable bino-like lightest neutralino, or
a quasi-stable stau. In scenarios with a stau NLSP the decay of χ̃0

1 → τ̃±1 τ
∓ will produce

staus which will leave a charged track which is relatively easy to detect. In the similar
“sweet spot” model of gauge mediation with a high messenger scale, an analysis of a quasi-
stable stau NLSP scenario was recently considered [24]. See for example, references [25–28]
for additional information on collider studies of quasi-stable stau NLSP scenarios. Indeed,
if this parameter range for F-theory GUTs is realized in nature, it will show up as a striking
signal at the LHC, the essential point being that because the stau leaves a charged track, it
is then possible to reconstruct the mass of the stau and then the associated decay products.
Proceeding up the decay chain, it is then possible to reconstruct more detailed information
regarding the mass spectrum of such a scenario. Due to the fact that this analysis has
already been performed, e.g. in [24, 28], and is itself based on earlier analysis of quasi-
stable stau NLSP scenarios, in this paper we shall focus on the more challenging case of
F-theory GUTs with a bino NLSP.

2As noted in [4], it is in principle possible to consider other supersymmetry breaking scenarios based on

gravity or modulus mediation, as in [9], and we refer the interested reader there for further details.

– 4 –



J
H
E
P
1
0
(
2
0
0
9
)
0
3
9

The remainder of this section is organized as follows. After reviewing the main features
of the low energy theory, we next describe the scan over parameter space of F-theory GUT
models. This is followed by a discussion of the characteristic features of the mass spectrum,
cross sections, and branching fractions, and in particular, the dependence of these quantities
on the inputs of F-theory GUTs.

2.1 Review of F-theory GUTs

In F-theory GUTs, the defining features of the GUT model are determined by the world-
volume theory of a seven-brane which fills our spacetime and wraps four internal directions
of the six hidden dimensions of string theory. The chiral matter of the MSSM localizes on
Riemann surfaces in the seven-brane, and interaction terms between chiral matter localize
at points in the geometry. As argued in [4], crude considerations based on the existence
of a limit where the effects of gravity can decouple imposes sharp restrictions on the low
energy content of the effective field theory. In particular, because such models admit a limit
where the effects of gravity can decouple, they are incompatible with mechanisms such as
gravity mediation. Rather, in F-theory GUTs the effects of supersymmetry breaking are
communicated to the MSSM via gauge mediation.

From the perspective of the low energy effective theory, the defining characteristic of
F-theory GUTs is that it constitutes a deformation away from a high scale minimal gauge
mediation scenario. Letting X denote the GUT singlet chiral superfield which develops a
supersymmetry breaking vev:

〈X〉 = x+ θ2FX , (2.1)

the characteristic mass scales associated with the sparticle spectrum in minimal gauge
mediation are controlled by the parameter:

Λ =
FX
x

. (2.2)

For example, in a model with N5 vector-like pairs of messenger fields in the 5⊕ 5 of SU(5),
the masses of the gauginos and scalar sparticles scale as:

mgaugino ∼ N5
α

4π
Λ (2.3)

mscalar ∼
√
N5

α

4π
Λ (2.4)

where in the above, α is shorthand for the contribution from the various fine structure
constants of the Standard Model gauge groups.

In the specific context of F-theory GUTs, the µ term is roughly given as:

µ ∼ FX

MKK
X

, (2.5)

where MKK
X ∼ 1015 GeV is a Kaluza-Klein mass scale of a GUT singlet in the compactifi-

cation. Thus, obtaining the correct value of µ requires:

FX ∼ 1016 − 1018 GeV2. (2.6)
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Higgs
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Figure 1. The range of values for the F-theory GUT parameter Λ extends from a lower bound set
by the current limits on the mass of the Higgs, to an upper bound determined by the requirement
that the gluinos be light enough to be produced at the LHC.

This range of values for FX implies that the mass of the gravitino is ∼ 10− 100 MeV.
Moreover, the fact that the scale of supersymmetry breaking is relatively high compared
to other models of gauge mediation implies that the NLSP will decay outside the detector
due to its long lifetime.

The rough range of values for Λ extends from Λ ∼ 104 GeV to Λ ∼ 106 GeV. Beyond
this range, the mini-hierarchy problem is exacerbated. In fact, we shall typically consider
a smaller range on the order of:

104 GeV . Λ . 2× 105 GeV, (2.7)

because for larger values of Λ, the masses of the gluinos and squarks would be too heavy to
be produced at the LHC. See figure 1 for a depiction of the range of values for Λ. Finally,
in the context of F-theory GUTs, the Bµ term and the A-terms all vanish at the messenger
scale. Thus, in this class of models, Bµ and the A-terms are radiatively generated, and
tanβ is typically in the range of 20− 40.

The mass spectrum of F-theory GUTs corresponds to a deformation away from the
minimal gauge mediation scenario. This is due to the fact that the theory contains an
anomalous U(1)PQ gauge symmetry. This anomaly is cancelled via the generalized Green-
Schwarz mechanism. The essential point is that this introduces additional higher dimension
operators into the theory which have the effect of shifting by a universal amount the soft
scalar masses:

m2
soft = m̂2 + eΦ∆2

PQ, (2.8)

where m̂ denotes the mass in the absence of the PQ deformation, and the charge eΦ is
defined as:

Chiral Matter: eΦ = −1 (2.9)

Higgs: eΦ = +2. (2.10)

To leading order, the gaugino masses and trilinear couplings are unchanged by
this deformation.

At a more fundamental level, the deformation parameter originates from integrating
out a heavy gauge boson of mass MU(1)PQ

so that:

∆2
PQ ∼ 4παPQ

F 2
X

M2
U(1)PQ

, (2.11)

– 6 –
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50 GeV0 GeV

Cosmo

Bound

PQ∆
mGMSB Tachyon

Figure 2. The PQ deformation parameter ∆PQ of F-theory GUTs lowers the squark and slepton
soft scalar masses in relation to the value expected from a high messenger scale model of minimal
gauge mediated supersymmetry breaking. At ∆PQ = 0, F-theory GUTs reduce to a high messenger
scale mGMSB model. Cosmological considerations impose a lower bound on ∆PQ of order 50 GeV.
Finally, there is also an upper bound on ∆PQ which comes from the requirement that the slepton
sector not contain a tachyonic mode.

where αPQ denotes the fine structure constant of the U(1)PQ gauge theory. A priori, the
value of this gauge boson mass can be on the order of the string scale, GUT scale, or even
somewhat lower. The phenomenologically most interesting region of course corresponds to
the case of lower MU(1)PQ

, or higher ∆PQ.
In fact, the cosmology of F-theory GUTs suggest a lower bound on ∆PQ on the or-

der of [7]:
∆PQ & 50 GeV. (2.12)

This comes from the fact that in F-theory GUTs, the Goldstone mode associated with
U(1)PQ symmetry breaking is the QCD axion [4]. The other real degree of freedom in the
associated supermultiplet is the saxion, which has a mass proportional to ∆PQ. As shown
in [7], the oscillations of the saxion eventually come to dominate the energy density of the
Universe, and its decay reheats the Universe provided the saxion is sufficiently heavy so
that a decay channel to a mode other than axions is available. This imposes the kinematic
constraint that the saxion be heavier than the Higgs, which translates into the lower bound
given by inequality (2.12).

There is also an upper bound to the size of ∆PQ because increasing ∆PQ decreases
the soft masses of the squarks and sleptons. Thus, for large enough values of ∆PQ on the
order of 500 GeV (the precise value of which depends on Λ and the number of messenger
fields), the low energy spectrum will contain a tachyon. See figure 2 for a depiction of the
range of values for ∆PQ. Depending on the number of messengers as well as the size of the
PQ deformation, either a bino-like neutralino, or a lightest stau could be the NLSP. Due
to the fact that the scale of supersymmetry breaking is so high, the NLSP decays outside
the detector, effectively behaving as a stable particle.

It is quite exciting that a remnant of stringy physics in the form of the PQ deformation
has a measurable manifestation at low energy scales. One of the aims of this paper is to
study how the effect of this deformation can be extracted from collider data.

2.2 Parameter space scan

Due to the fact that F-theory GUTs depend on one discrete parameter, N5, and two
continuous parameters, Λ and ∆PQ, it is possible to perform a scan over much of the

– 7 –
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parameter space of models. The range of the scan performed over the parameters Λ and
∆PQ depends on the number of messengers N5, because if the masses of the gluinos and
squarks are too heavy, the LHC will not be able to generate sparticles of the desired mass.
For example, in minimal GMSB, the masses of the gluinos and squarks respectively scale
as N5Λ and

√
N5Λ. Thus, even a factor of five increase in Λ can jeapordize the production

of gluinos at the LHC. Further, increasing Λ exacerbates the fine tuning already present in
the Higgs sector. For this reason, we believe it is theoretically well-motivated to primarily
consider scenarios where Λ is as small as possible, without violating current experimental
lower bounds on the masses in the sparticle spectrum. As explained earlier, we will focus
on bino NLSP scenarios because the lightest stau NLSP scenario of similar models has been
studied elsewhere, such as in [24]. Nevertheless, some distinctive features of such models
in the context of F-theory GUTs are discussed briefly in subsection 2.6.

Restricting to the bino NLSP case, since increasing the number of messengers lowers the
stau mass relative to the gaugino masses, the condition that the masses satisfy the relation:

m eB < m eτ1 (2.13)

translates into the requirement that:

1 ≤ N5 ≤ 3. (2.14)

Moreover, as Λ decreases, the Higgs mass also decreases. Thus, the bound on the
Higgs mass obtained from LEP II puts a lower bound on Λ, which we denote by Λmin(N5).
The maximum value of Λ we consider, which we denote by Λmax(N5) is chosen so that the
resulting sparticle masses are light enough to generate enough events at the LHC after a
few years. We note that both Λmin(N5) and Λmax(N5) are fairly insensitive to ∆PQ. For
each scanned value of Λ, we also scanned over ∆PQ from ∆PQ = 0 to a value of ∆PQ such
that m eτ1 − m eB < 10 GeV. To summarize, in this paper we have scanned over F-theory
GUTs in the parameter range:

• 1 ≤ N5 ≤ 3

• Λmin(N5) ≤ Λ ≤ Λmax(N5)

• 0 ≤ ∆PQ ≤∆max
PQ (N5,Λ).

2.3 Mass spectrum

Scanning over all regions of interest in F-theory parameter space, we have generated the
associated sparticle spectra using SOFTSUSY [29] by imposing the boundary condition Bµ =
0 at the messenger scale. Compatibility with electroweak symmetry breaking then fixes
tanβ to a large value between 20− 40, the exact value of which depends on the specifics of
the model. The dependence of the mass spectrum on N5 and Λ when ∆PQ = 0 corresponds
to the case of mGMSB with a high messenger scale Mmess ∼ 1012 GeV. See, for example, [30]
for a review of gauge mediated supersymmetry breaking. In this section, we discuss the
effect of ∆PQ on the mass spectrum.
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Figure 3. Plot of the mass spectrum of F-theory GUTs with N5 = 1, Λ = 1.3 × 105 GeV,
and minimal (red, left part of each column) and maximal (blue, right part of each column) PQ
deformation. See figure 29 in appendix F for the spectra of three messenger models.

The spectrum separates into those particles which are affected by the PQ deformation,
and those which are not. To leading order, the masses of the gauginos are not affected by
the PQ deformation. Just as in minimal gauge mediation, the low scale gaugino masses
mi of the three gauge group factors satisfy the relation:

m1 : m2 : m3 ∼ 1 : 2 : 6. (2.15)

In the context of F-theory GUTs, the two lightest neutralinos and the lightest chargino
correspond to gauginos, with a primarily bino-like lightest neutralino. The spectrum of
MSSM particles which are not affected by the PQ deformation are therefore:

NPQ: χ̃0
1, χ̃0

2, χ̃±1 , g̃, (2.16)

where we have ordered the sparticles from lightest on the left to heaviest on the right.
The masses of the remaining sparticles of the MSSM all shift due to the PQ deforma-

tion. This includes not just the squarks and sleptons, but also the Higgsinos. This latter
shift is more indirect, and can be traced back to the fact that the PQ deformation alters
the form of the scalar Higgs potential. As a consequence, achieving proper electroweak
symmetry breaking leads to a shift in the value of the µ parameter at the messenger scale.
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Figure 4. Plots of squark masses versus the gluino mass in F-theory GUTs. The top and bottom
plots are for one and two messenger models respectively. The upper line in the plots corresponds to
mg̃, while the lower one corresponds to mg̃ −mt. These figures imply that the decay of the gluino
in one messenger models proceeds via a 3-body process, but in two messenger models it decays in
a two-body one. The three messenger case is similar to the two messenger case. The gluino mass is
primarily determined by Λ, and the variations of the squark masses in these figures are due to the
change of ∆PQ.
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Figure 5. Plot of the stau masses in F-theory GUTs versus the bino NLSP mass for N5 = 1, 2, 3
messengers. The upper line in the plot corresponds to mχ̃0

2
, while the lower one corresponds to

mχ̃0
1
. This figure shows the typical hierarchy in the masses of τ̃1 and χ̃0

1,2. The variation in the stau
mass corresponds to the change of ∆PQ, which becomes less significant in the bino NLSP regime
as the number of messengers increases.

This in turn alters the masses of the Higgsinos. The spectrum of MSSM particles which
are affected by the PQ deformation ordered by lowest mass sparticles on the left to most
massive on the right are:

PQ: l̃, χ̃0
3, χ̃0

4, χ̃±2 , q̃. (2.17)

The mass shift due to the PQ deformation is most prominent for lighter sparticles. At
the messenger scale, the mass shift for squarks and sleptons is:

m = m̂

√
1−

∆2
PQ

m̂2
, (2.18)

where m̂ denotes the mass at the messenger scale in the absence of the PQ deformation.
Hence, when m̂ � ∆PQ, there is little change in the mass of the sparticle, so that the
squarks will shift by a comparably small amount. On the other hand, the masses of the
sleptons can shift significantly. Since the mass spectrum is generated mainly by gauge
mediation, the absence of an SU(2) gauge coupling implies that the right-handed selectron
ẽR, smuon µ̃R and stau τ̃R will be lighter, and thus more sensitive to the PQ deformation
in comparison with their left-handed counterparts. Depending on the range of parameter
space, the ẽR, µ̃R and τ̃R mass can either be above or below the mass of the χ̃0

2. It is also
possible in some cases for ẽR, µ̃R and τ̃R to become comparable in mass to χ̃0

1.
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Figure 6. Plot of the cross sections at 14 TeV CM energy for the primary supersymmetric processes
as a function of Λ for F-theory GUT models with N5 = 1 and ∆PQ = 0 GeV. Note that as Λ
increases, the cross sections decrease by roughly an order of magnitude. See figure 30 in appendix
F for a similar plot of the N5 = 3 case.

Due to the large Yukawa couplings present in the third generation, RG flow will amplify
the effects of the PQ deformation in the third generation squarks and sleptons. The stop
and sbottom can typically become lighter than the gluino in such models, and the τ̃1 is
lighter than χ̃0

2. A comparison of these mass hierarchies for different number of messengers
can be seen in figures 4 and 5. Further, for large enough values of ∆PQ, the τ̃1 can be
lighter than χ̃0

1. Figure 3 and figure 29 in appendix F illustrate the mass spectrum of a
single messenger and three messenger model at minimal and maximal PQ deformation. By
inspection of these figures, it follows that progressing up in mass tends to diminish the
effects of the PQ deformation.

The interplay between ∆PQ and the mGMSB parameters N5 and Λ also influences the
form of the low energy spectrum. Returning to figures 3 and 29, we note that although it is
a well-known aspect of minimal gauge mediation, an important feature of these spectra is
that as the number of messengers increases, the scalar sparticles tend to decrease in mass
faster than their fermionic counterparts. This will have important consequences when we
discuss potential decay chains of interest.

2.4 Cross sections

We now discuss the dependence of the associated cross sections on the parameters N5,
Λ and ∆PQ. Scanning over F-theory parameter space, we have generated the (leading
order) cross sections for parton collisions using PYTHIA [31]. The dominant supersymmetric
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processes are associated with events where parton collisions generate either two gluinos
(σegeg), a squark and a gluino (σeqeg), two squarks (σeqeq), two lightest charginos (σeχ+

1 eχ−1 ),
or a second neutralino and a lightest chargino (σeχ0

2 eχ±1 ), where here, q̃ denotes a first or
second generation squark. We have also determined the total cross section generated by
all dominant processes, which we denote by σtot.

Figure 6 and figure 30 in appendix F show plots of the largest cross sections as a func-
tion of Λ with ∆PQ = 0 for N5 = 1 and N5 = 3. Note that as expected, increasing Λ tends
to decrease the cross section. An interesting feature of these plots is that although they
are not colored particles, there is a significant amount of chargino and second neutralino
production. In addition, we find that there is only very weak dependence on ∆PQ in the
dominant cross sections. Turning the discussion around, because the cross section has lit-
tle dependence on ∆PQ, we can deduce that the primary effects from the PQ deformation
must originate from shifts in the masses, or branching ratios as a function of ∆PQ.

2.5 Decay channels

In this subsection we discuss the primary decay channels which are present in F-theory
GUTs. Due to the fact that the cross section is dominated by the production of gluinos,
squarks, lightest charginos and second lightest neutralinos, these will also be the first
particles present in the decay chain. We have computed the relevant branching fractions by
linking the output from the mass spectrum calculated via SOFTSUSY [29] with SDECAY [32].
Due to the fact that the relative masses of the squarks and the gluino heavily depends on
whether N5 = 1 or N5 > 1, in the following discussion we separate our analysis of these
two cases.

2.5.1 Single messenger case

First consider single messenger F-theory GUT models. In this case, only the stop and
sbottom are typically lighter than the gluino whereas for N5 > 1, all of the squarks are
lighter than the gluino. Thus, the gluino decays via off shell squarks to three decay products
in the case of N5 = 1 whereas for N5 > 1, two body decays are instead preferred. The
dominant decay channels for the gluino at small PQ deformation are presented below in
the case of N5 = 1 with Λ = 1.44× 105 GeV:

Channel ∆PQ = 0 ∆PQ = 250 GeV
g̃ → χ̃±1 q

∓
1 q
±
2 27% 20%

g̃ → χ̃0
1,2q
∓q± 26% 20%

g̃ → χ̃±1,2t
∓b± 21% 30%

g̃ → χ̃0
1,2,3,4b

∓b± 20% 10%
g̃ → χ̃0

1,2,3,4t
∓t± 13% 17%

. (2.19)

In the above, we have adopted a condensed notation where ± and ∓ refer to the charges
of the particle and its anti-particle. Also q refers to the first two quark generations and
q1,2 refer to distinct components of an SU(2) quark doublet. By inspection, the stringy PQ
deformation does produce a change in the branching fractions. Note that the decay of a
single g̃ to two tops is a decay which is easy to see with small luminosity [33].
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The decay of the right-handed squarks provides another channel which is potentially
sensitive to the effects of the PQ deformation. For example, the branching ratios for the
decay of the right-handed sdown are:

Channel ∆PQ = 0 ∆PQ = 250 GeV
d̃R → χ̃0

1d 12% 15%
d̃R → g̃d 88% 84%

, (2.20)

while for the right-handed sup, we find:

Channel ∆PQ = 0 ∆PQ = 250 GeV
ũR → χ̃0

1u 31% 36%
ũR → g̃u 69% 64%

. (2.21)

Similarly for the left-handed sdown and sup, the dominant decay is to gluino plus quark,
followed by the decay to chargino plus quark. These decays are all sensitive to the PQ
deformation only at the level of a few percent change in the branching fraction.

Next consider the decay of the chargino χ̃±1 and the second neutralino χ̃0
2. These

channels are especially interesting because their production is not directly accompanied
by colored objects. Moreover, in contrast to the other channels considered so far, the
branching fractions of χ̃±1 and χ̃0

2 both have strong dependence on the PQ deformation.
The branching fractions for the decay of χ̃±1 are:

Channel ∆PQ = 0 ∆PQ = 250 GeV
χ̃±1 → τ̃±1 ντ 51% 85%
χ̃±1 → χ̃0

1W
± 49% 15%

. (2.22)

Because increasing the size of the PQ deformation parameter decreases the mass of the
stau, more phase space is available for a decay into a stau and tau-neutrino. This large
effect may mean it is possible to measure non-zero ∆PQ by triggering on events with W±

and τ ’s. In certain cases, this is possible because the χ̃±1 production cross section can be
≥ 0.1 pb.

Next consider the decay of χ̃0
2. In this case, the relevant branching fractions are:

Channel ∆PQ = 0 ∆PQ = 250
χ̃0

2 → τ̃±1 τ
∓ 51% 84%

χ̃0
2 → χ̃0

1h 43% 13%
χ̃0

2 → χ̃0
1Z 5% 2%

. (2.23)

Much as in the decay of χ̃+
1 , the increase in the branching fraction to staus as ∆PQ increases

follows from the fact that as the mass of the stau decreases, more phase space becomes
available for a decay into a stau and tau.

2.5.2 Multiple messenger case

In contrast to the single messenger case, in the case of multiple messengers, the masses
of the scalars are typically lower in comparison to the gauginos. One consequence of this
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change is that the gluino can now decay to two on-shell products. In addition, the effects
of the PQ deformation are typically weaker in the range of values where the bino is the
NLSP. This is due to the fact that the stau is already closer in mass to the bino prior
to turning on any PQ deformation. For these reasons, we shall focus on decay channels
present at zero PQ deformation.

Restricting now to the case of zero PQ deformation, it is of interest to compare multiple
messenger models with similar spectra. Letting Λi denote the value of Λ in the case of i
messengers, we expect a rough degeneracy in the mass spectrum when either the gauginos
or scalars have similar masses. A similar gaugino mass spectrum leads to the condition:

i · Λi = j · Λj (2.24)

while a similar scalar mass spectrum requires:
√
i · Λi =

√
j · Λj . (2.25)

A rough similarity in the mass spectra can therefore be expected in the range of values:√
i

j
≤ Λi

Λj
≤ i

j
, (2.26)

where without loss of generality, i ≥ j. As an example, we compare the decay channels for
a two and three messenger model such that:

Λ2 = 8× 104 GeV (2.27)

Λ3 = 5.7× 104 GeV. (2.28)

As in the case of the single messenger models, we now determine the primary decay channels
for gluinos, right-handed first and second generation squarks, and charginos. The distinc-
tion between the various branching fractions then provide a means to extract signals which
can distinguish between these cases. In addition, we find that in all cases, there is little
shift in the branching fractions at non-zero PQ deformation in the bino NLSP regime.

The dominant decay channel for gluinos is given by decays to squarks. Comparing the
two and three messenger models presented above, we find:

Channel N5 = 2 N5 = 3
g̃ → t̃±t∓ 82% 45%
g̃ → b̃±b∓ 17% 30%
g̃ → q̃±Rq

∓ 0.3% 25%

. (2.29)

By inspection, gluinos decay to stops and tops with large branching fractions, thus giving
rise to a spectacular four top signature at the LHC [33]. It is interesting to note that similar
signature can also arise from the G2-MSSM [34]. Further, note that this decay mode is
more favored in the two messenger case.

Next consider the decay of the right-handed sdown and sup. We find that in both cases,
the dominant decay of the squark is to the lightest neutralino and quark with all other
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decay channels entirely negligible. This is to be contrasted with the single messenger case,
where the dominant decay mode is to a gluino and quark due to the fact that in the single
messenger model, the squark is typically heavier than the gluino, whereas in the multiple
messenger models, the situation is reversed. The change in the decay of left-handed sdown
and sup is similar. Both of these decay dominantly to χ̃±1 + q′ and χ̃0

2 + q. The decay to
gluino is now suppressed kinematically.

The decay of χ̃±1 is roughly similar in the two and three messenger cases, with branch-
ing fractions:

Channel N5 = 2 N5 = 3
χ̃±1 → τ̃±1 ντ 79% 82%
χ̃±1 → χ̃0

1W
± 21% 18%

, (2.30)

which is again a small effect.
Finally, we also consider decays of χ̃0

2. The branching fractions are only mildly sensitive
to a change in the number of messengers:

Channel N5 = 2 N5 = 3
χ̃0

2 → τ̃±1 τ
∓ 78% 80%

χ̃0
2 → χ̃0

1h 19% 16%
χ̃0

2 → χ̃0
1Z 2% 2%

. (2.31)

To summarize, we therefore see that the predominant difference between the branching
fractions present in the two and three messenger models are dictated by the decays of the
gluino. Such signals then provide a means to distinguish between two and three messenger
models. Moreover, as indicated earlier, in the regime of parameters where the bino is the
NLSP, the PQ deformation in the multiple messenger cases does not lead to a significant
change in the sparticle mass spectrum. Therefore, it is expected to be more difficult to
distinguish them from mGMSB models.

2.6 F-theory GUTs with a stau NLSP

While the primary focus of this paper is F-theory GUT scenarios with a bino NLSP, the
stau NLSP scenario is also a viable option, and is especially likely for F-theory GUTs with
multiple messenger fields. In this subsection we briefly sketch some features of the expected
signals in this case, and discuss how to distinguish such models from high messenger scale
mGMSB models with a quasi-stable stau NLSP.

When the lightest stau is the NLSP of an F-theory model, it will either leave a highly
ionizing track in the tracking chamber or “fake muons ” in the muon chamber of a detector
at the LHC. The mass of the lightest stau can be determined by the energy-loss (dE/dt)
and Time-of-Flight measurement. The other particles further up the decay chain can be
constructed as well in principle [28]. For example, by determining the invariant mass
resulting from the on shell decays χ̃(0)

1,2 → τ±τ̃∓1 , it should then be possible to reconstruct
the mass of χ̃0

1,2. Kinematic considerations require meχ0
1,2
> meτ1 . In addition, the decay of

a first or second-generation right-handed squark via the process q̃R → χ̃0
1q → τ̃±1 τ

∓q can
also be used to extract detailed properties of the spectrum. For example, by observing the
trajectory of the lightest stau, it is then possible to reconstruct the four-momentum of χ̃0

1.
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Thus, once the mass of χ̃0
1 has been extracted, the corresponding squark mass can also be

specified. While a completely accurate reconstruction may require about 10− 30 fb−1 of
integrated luminosity, this can in principle be accomplished with data from the first three
years of the LHC, and therefore provides one reliable method for determining detailed
features of the spectrum. In addition to this type of direct mass reconstruction, many of
the methods based on a footprint analysis will carry over to the stau NLSP case as well.

Once the masses of the τ̃1, χ̃0
1,2 and q̃R have been determined, it will be possible to

compare these values with the spectrum expected from mGMSB with a high messenger
scale. Since the masses of the sparticles in mGMSB are determined by N5, Λ and to a
far weaker extent Mmess, the masses of the remaining sparticles are fixed by the values
of mbino (or mwino) and meqR . In particular, it is possible to then determine the mass
of the lightest stau in a minimal GMSB scenario. Assuming that this determination has
been performed, measuring the mass of the lightest stau will then provide a direct way
to distinguish between the mGMSB prediction, and the F-theory prediction with non-zero
PQ deformation.

3 Distinguishing F-theory GUTs from other models

One of the primary aims of this paper is to determine whether the LHC will be able to
distinguish F-theory GUTs from other potential extensions of the Standard Model. At the
first level of analysis, it is important to establish whether the signatures from the LHC are
compatible with the MSSM. This is a topic which has been discussed extensively in the
literature, for some recent studies of this kind see [35–39] and references therein. We shall
therefore assume that evidence compatible with the MSSM has been found.

At the next stage of analysis, we would like to establish whether F-theory GUTs
can be distinguished from other models with an MSSM spectrum such as mSUGRA, as
well as mGMSB scenarios with a low messenger scale. Once we have ruled out these
possibilities as potential candidates which can mimic the effects of F-theory GUTs, it is
then important to establish that F-theory GUTs can be distinguished from high messenger
scale mGMSB scenarios. Because of the similarities between F-theory GUTs and high scale
gauge mediation scenarios, we shall postpone this analysis to section 4.

The extent to which we can distinguish a given class of models depends on the inte-
grated luminosity of LHC data. For the most part, we shall simulate 5 fb−1 of integrated
luminosity. Interestingly, we find that even with just 5 fb−1 of simulated LHC data, it is
possible to distinguish F-theory GUTs from small A-term mSUGRA models. The primary
limitation in this determination is that the squark and gluino masses must be light enough
to be produced by the LHC. We also find that it is possible to distinguish large A-term
mSUGRA models from single messenger F-theory GUTs. On the other hand, large A-term
mSUGRA models can more effectively mimic some of the signatures of multiple messenger
F-theory GUTs. Finally, we also show that F-theory GUTs can be distinguished from
minimal gauge mediation models with a lower messenger scale.

To perform this analysis, we have adapted the general footprint method of [22, 23]
to the case of F-theory GUTs. This consists of developing a set of signatures which will
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allow us to distinguish between an F-theory GUT and other models, such as mSUGRA
models, or even between distinct F-theory GUT models. Given a model, one would like
to determine a set of N signatures (the exact value of N depending on the details of the
footprint) which are likely to be sensitive to the input parameters of the model. Thus a
single model generates an N -dimensional vector. The proximity or lack thereof between
the vectors of two such theories can then be used to distinguish between different models.

The methodology of the footprint is very general, and consists of scanning over various
signatures in a class of models and varying the allowed parameters within a given class.
Comparing with other classes of models it is then possible to single out the signatures which
are most effective in distinguishing them. These signatures can in principle consist of just
counting events, or some combination of counting events with more refined observables. In
the footprint method only actual measurable signatures are used, not quantities difficult to
measure such as sparticle masses, soft-breaking parameters, or tanβ. Further, parameters
not explicitly fixed by prior considerations are scanned. In this way, we can avoid deriving
misleading conclusions based on specific features of a single model or simulation.

Once we have isolated a class of signals which can potentially serve to distinguish
an F-theory GUT from other models, the next step is to determine whether at a more
quantitative level it is possible to distinguish various models. To this end, we introduce a
chi-square like measure of distinguishability, and show that with respect to this measure,
it is indeed possible to distinguish between many models.

The rest of this section is organized as follows. We first describe the simulation of sig-
nals and Standard Model background. After this, we define in more precise terms the class
of mSUGRA models and low scale mGMSB models which we shall compare to F-theory
GUTs, paying special attention to signatures which can potentially be used to distinguish
F-theory GUTs from these models. After introducing a more quantitative notion of dis-
tinguishability in both theory and signature space, we develop a set of signatures which
comprise our footprint. Using this set of signatures, we show that in most cases, it is possi-
ble to distinguish between F-theory GUTs and mSUGRA models, as well as low messenger
scale mGMSB models. We defer a full comparison of F-theory GUTs to high messenger
scale mGMSB models to section 4.

3.1 Simulation of signals and background

Before proceeding to potential signals of interest, we first describe our simulation of LHC
signatures. To simulate the signals of F-theory based models, we use the spectrum and
decay table obtained (in SLHA format) by linking SOFTSUSY and SDECAY to generate events
using PYTHIA 6.4. These events are then passed to PGS4 [40] for detector simulation. To
reduce the number of background events, we have used the PGS trigger with high thresholds,
the details of which can be found in appendix D. In principle, one should include the next-
to-leading order correction to the tree-level cross sections used in the PYTHIA. However,
since our main purpose is to compare different classes of models, it is not particularly
important to include such corrections. In addition, although PGS is a simplified detector
simulator and is not tuned to match either ATLAS or CMS, it is still useful as a way to
obtain characteristic LHC signatures.
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Selection 2 jets + 6ET 4 jets + 6ET
PT (GeV) > 150, 100 > 100, 50, 50, 50
6ET (GeV) > 150 > 100

ST > 0.2 > 0.2
Meff (GeV) > 1200 > 1200

Table 1. Inclusive SUSY search channel selection cuts used in order to reduce SM background.

We have simulated 5 fb−1 of Standard Model background by including the most im-
portant channels tt, W/Z + jets and WW/WZ/ZZ + jets. In many cases, a significant
reduction in QCD background can be achieved by means of sophisticated event selection
cuts, which we shall therefore typically neglect. These events are generated using the
PYTHIA-PGS package in the same way as the signals. Of course, even though the use of
parton-shower Monte Carlo to estimate multi-jet backgrounds is known to underestimate
the backgrounds, for our present purposes where S �

√
B, it suffices to include just the

effects of the PYTHIA simulation.
To obtain LHC signatures, we selected subsets of events with different final state

objects: jets, leptons, missing energy. Before the event selection, we impose the following
object-level cut:

• photon, lepton, tau: PT > 10 GeV and η < 2.5

• jets: η < 3.0

Here no jet PT cut is imposed until the event selection.
In order to reduce SM background, we first consider two typical SUSY search channels

based on inclusive two jets plus 6ET , and inclusive four jets plus 6ET , with selection cuts
given in table 1. Both channels are well studied in ATLAS [41] and CMS [42], and the
background (mainly from tt̄ and W/Z + jets) is known to be controllable in the large
effective mass region.

Here, the Effective Mass Meff is defined as the sum of PT of all objects in an event
including the missing energy:

Meff ≡
∑
i=all

P iT + 6ET . (3.1)

In addition, 0 < ST < 1 denotes the transverse sphericity:

ST =
2λlarge

λsmall + λlarge
(3.2)

where λlarge and λsmall denote the large and small eigenvalues of the 2 × 2 transverse
sphericity tensor:

S =

(
Σp2

x Σpxpy
Σpxpy Σp2

y

)
. (3.3)

In the case of SUSY events, the transverse sphericity is typically closer to ST = 1, indicating
a more isotropic event.
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Signature List A
1 0τ(PT > 40),≥ 2jets(PT > 150, 100)
2 ≥ 1τ(PT > 40),≥ 2jets(PT > 150, 100)
3 ≥ 2τ(PT > 40),≥ 2jets(PT > 150, 100)
4 0b(PT > 50),≥ 2jets(PT > 150, 100)
5 ≥ 2b(PT > 50),≥ 2jets(PT > 150, 100)
6 ≥ 6jets(PT > 100, 100, 20, 20, 20, 20)
7 ≥ 4jets(PT > 250, 250, 150, 150)
8 0l(PT > 20),≤ 4jets(PT > 50), 6ET > 500
9 0l(PT > 20),≥ 5jets(PT > 50), 0.5 < rjet < 1.0
10 ≥ 1l(PT > 20),≥ 5jets(PT > 50), 0.05 < 6ET /Meff < 0.35

Table 2. List of signatures obtained from a footprint analysis which are effective in distinguishing
F-theory GUTs from mSUGRA and low scale mGMSB. These signatures will also be used to
distinguish models using a chi-square like measure ∆S2, which shall be introduced in subsection 3.4.
All the PT and 6ET thresholds are in units of GeV. The variable rjet is defined as rjet ≡ (P jet3

T +
P jet4
T )/(P jet1

T + P jet2
T ), where P jeti

T is the transverse momentum of the i-th hardest jet in the event.

From these two inclusive selections, we further divide the events according to the
number of leptons, taus and b-jets in the final states. Other signatures include multijets
plus 6ET with hard jet PT thresholds, and inclusive one tau signatures with various different
PT thresholds. For completeness, we also include the signatures which have been found
to be effective for testing gaugino mass unification in [43]. In total, we have studied 103
signatures, which are listed in appendix C.

Although we have included a large number of candidate signatures, we will see later
that only a small subset of these are really effective in distinguishing models. See table 2
for the 10 signatures selected using the footprint analysis. The details of this footprint
analysis will be applied later in the context of specific models. These signatures will also
be used later to distinguish F-theory GUTs from other candidate models using a chi-square
like measure ∆S2 which shall be introduced in subsection 3.4.

Before comparing signals for different classes of new physics models, it is important
to check that the candidate signal S is sufficiently large compared to the SM background
B so that S > 5

√
B. As reviewed for example in [43], the discovery condition can also be

written as a condition on luminosity

L > γ2σSM
σ2

(3.4)

where σ and σSM are respectively the cross sections of a specific channel, and the Standard
Model background, and γ characterizes the number of sigma for a given confidence level,
so that for example a five sigma level of confidence corresponds to γ = 5. For a given
luminosity, only those channels which could lead to discovery are important, and these are
the only ones we shall consider.
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To distinguish models, this criterion must be supplemented by the condition that the
difference of two signals is also above the Standard Model background. For example, con-
sider a signal S1 and S2 with corresponding cross sections σ1 and σ2 for two models obtained
for given luminosity L. When S < B, the condition for two models to be distinguishable is:

|σ1L− σ2L| > γ
√
σSML (3.5)

The minimal luminosity required for distinguishability is then given by:

LDTmin = γ2 σSM
(σ1 − σ2)2

(3.6)

By inspection, LDTmin increases as the difference in signatures decreases, and could be much
larger than the discovery limit. Conversely, as the difference in signatures increases, the
minimal luminosity required for distinguishability decreases.

3.2 Mimicking F-theory GUTs

In this section we analyze some models with an MSSM spectrum which can potentially
mimic the effects of F-theory GUTs. While it is in principle possible to perform a complete
scan over all of the soft supersymmetry breaking terms of the MSSM, in practice, this is
computationally not feasible. For this reason, we shall focus on some well known examples
with similar spectra to those of F-theory GUTs. To this end, we consider mSUGRA models
with small and large universal A-terms, and minimal gauge mediation models with low and
high messenger scales. We defer a full comparison between high scale mGMSB models and
F-theory GUTs to section 4.

Even when the spectra of two models are similar, there will typically be a difference in
the branching fractions which can translate into experimental observables. In this section
we discuss from a theoretical standpoint signatures which can potentially distinguish be-
tween these models and F-theory GUTs. As throughout this paper, we focus on the case
of F-theory GUTs with a bino NLSP.

We begin by discussing the case of mSUGRA models. See appendix A for further
details on the scan of mSUGRA models performed. There are two regimes of interest
corresponding to mSUGRA models with small universal A-terms, and large universal A-
terms. By the “small A-term” regime we shall mean the region in mSUGRA parameter
space where the universal A-term is small, and such that the slepton masses are large
compared to the electro-weakinos:

mτ̃ ≈ mẽ,µ̃ > mχ̃0
1,2

, (3.7)

which roughly mimics the case of F-theory GUTs, although there is some difference in that
mτ̃ > mχ̃0

2
. For these mSUGRA models, χ0

2 and χ±1 will typically decay into an LSP plus
a gauge boson or a Higgs boson. This is in contrast to the case in F-theory based models
where decay through the lightest stau τ̃1 is always important, giving 2 τ plus missing ET or
4 τ plus missing ET signatures. Therefore, to distinguish this subset of mSUGRA models,
one can look for lepton flavor universality, or more explicitly, whether there are more taus
than electrons and muons in the events.
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Large A-term mSUGRA models can also potentially mimic the spectrum of F-theory
GUTs. By the “large A-term” regime we shall mean the region in mSUGRA parameter
space where the universal A-term is large, and where the mass of the lightest stau τ̃1 is
suppressed due to either a large Yukawa, or an A-term such that:

mχ̃0
1
< mτ̃1 < mχ̃0

2
. (3.8)

This is the same ordering of masses present in F-theory GUTs with a bino NLSP. Therefore,
large A-term models can mimic signals based on the decay of χ0

2 to an on-shell stau.
Further, although the A-terms of F-theory GUTs are zero at the messenger scale, the high
messenger scale implies that radiative corrections can still generate contributions to the
A-terms of F-theory GUTs at lower energy scales. In fact, as we will see in section 3.6, this
subset of mSUGRA models can for low enough luminosity indeed sometimes be difficult to
distinguish from the signatures of F-theory based models.

Minimal GMSB scenarios constitute another class of models which could mimic the
signatures of F-theory GUTs. Here, there are two qualitative regimes of interest corre-
sponding to models with a high, or low messenger scale. Since we shall consider the case of
high messenger scale models in greater detail in section 4, in this section we focus on the
comparison between F-theory GUTs and low messenger scale mGMSB models. In contrast
to F-theory GUTs where the NLSP always decays outside the detector, in the case of a
low scale GMSB model, the NLSP decays inside the detector. In principle, the NLSP can
correspond either to a bino-like neutralino, or the lightest stau. To determine whether
we can distinguish F-theory GUTs from these possibilities, we compare the two cases of
a bino or stau NLSP for F-theory GUTs, respectively denoted by Fbino and Fstau with
the analogous options for low scale mGMSB, which we denote by mGMSB(LO)bino and
mGMSB(LO)stau:

Fbino vs mGMSB(LO)bino Fbino vs mGMSB(LO)stau

Fstau vs mGMSB(LO)bino Fstau vs mGMSB(LO)stau

. (3.9)

In the case of a low scale model with bino NLSP, the decay of a pair of binos emits two
hard photons, providing a relatively clean signature which is absent in the case of F-theory
GUT models. Next consider the two remaining possibilities denoted by the second column
of (3.9). When the stau is the NLSP of an F-theory GUT, it will leave a charged track in
the detector, which should again provide a relatively straightforward means by which to
distinguish this class of models from low scale models.

The final case of comparison, corresponding to a high scale model with a bino NLSP
versus a low scale model with a stau NLSP is more delicate. Note, however, that when
the stau NLSP decays promptly inside the detector, the lightest neutralino can decay to
opposite sign taus and a gravitino, as in χ̃0

1 → τ±τ∓G̃, leading to a 4 τ plus missing
ET signature. Although such signatures can also arise from F-theory GUTs with a bino
NLSP via the decay channel χ̃0

2 → τ±τ∓χ̃0
1, they are less common since the corresponding

branching ratio is usually smaller than that associated with channels involving gauge bosons
and the Higgs. In addition, a large fraction of sparticles decay into chargino χ̃±1 which only
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gives one τ for each chargino. Therefore, the counting signatures related to multiple taus in
the final state should be helpful in distinguishing F-theory models from low scale mGMSB
models with a stau NLSP.

Having specified some examples of models with very different theoretical motivations,
we next proceed to determine to what extent we can distinguish these possibilities from
F-theory GUTs, both at the level of soft terms, as well as more importantly, from the
perspective of potential experimental signatures.

3.3 Theory space measure: ∆P 2

Although our primary focus will be on the extent to which we can distinguish collider
signatures of F-theory GUTs from other models, it is also of interest to see whether there
are any degeneracies at the level of the effective field theory. In such cases, the resulting
experimental signatures may also be quite similar. However, even differences between soft
masses on the order of 50 GeV are typically sufficient to produce some differences in the
branching fractions of a given decay. To get a rough sense of the level of the theoretical
degeneracy, we have used a similar measure of distinguishability to that given in [44].
Summing over the soft parameters of a given model, we define a notion of theoretical
distinguishability between two models M1 and M2 as:

∆P 2(M1,M2) =
1

Nparam

Nparam∑
i=1

(
|p(1)
i | − |p

(2)
i |

p
(12)
i

)2

, (3.10)

where the sum i runs over parameters of the model, such as the soft masses or trilinear
couplings, Nparam denotes the total number of such parameters, and p

(12)
i = (|p(1)

i | +
|p(2)
i |)/2 denotes the average between the two values. Here, we have taken the norm of

all parameters because we shall typically be interested in differences based on branching
fractions and masses.

The quantity ∆P 2 roughly measures the quadrature average of the percentage differ-
ence between two models. Note that since we shall always consider the absolute value of a
parameter, ∆P 2 is bounded by the inequalities:

0 ≤ ∆P 2(M1,M2) ≤ 4. (3.11)

Typically, we shall compare models up to the level of about ∆P 2 > 0.01, although in
principle this can be refined further.

In all cases, we shall compare models in theory space using the dominant soft super-
symmetry breaking parameters, because the corresponding soft breaking terms serve to
determine the physical masses and branching fractions of a given model. The soft breaking
parameters include the twenty soft mass parameters of the MSSM (three gaugino mass
parameters, two Higgs soft mass parameters and 3×5 = 15 soft scalar mass parameters for
the scalar partners of Standard Model fermions), as well as the (3, 3) component of all the
trilinear A-term couplings given by Aτ , Ab and At, in the self-explanatory notation. The
Higgs sector of the theory is determined by the parameters m2

Hu
, m2

Hd
, µ and Bµ. Proper

electroweak symmetry breaking imposes one real condition on these parameters, so that in
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any viable model, there are in fact only three independent parameters to scan over. Since
we have already included the soft masses squared of the Higgs fields, either µ or Bµ can
be used as the third parameter. In fact, we shall typically specify the third parameter of
the Higgs sector by including just the value of tanβ = 〈Hu〉/〈Hd〉.

To summarize, we shall compare distinct models in theory space using the 24 soft
parameters just specified. Thus, in this case Nparam = 24, and the sum of equation (3.10)
will range over these 24 parameters.

3.4 Signature space measure: ∆S2

To quantify the extent to which a given set of signals is able to distinguish two models,
we must have some notion of “distance” between various models. Given two models M1

and M2, we are interested in knowing whether a given set of N observables O(1)
1 , . . . ,O(1)

N

and O(2)
1 , . . . ,O(2)

N effectively distinguish these models. To this end, we can introduce a
chi-square like variable which defines a notion of distinguishability:

∆S2 (M1,M2) =
1
N

N∑
i=1

(
O(1)
i −O

(2)
i

)2

(
σ

(1)
i

)2
+
(
σ

(2)
i

)2
+
(
σ

(SM)
i

)2 , (3.12)

where in the above, (σ(1)
i )2 denotes the variance in the ith signature of O(1), with similar

notation for (σ(2)
i )2. In the above, we have also included the background from Standard

Model processes, in the form of (σ(SM)
i )2. Although quite similar to a chi-square measure,

this definition is typically reserved for global fits to the data, and so to avoid any confusion,
we shall instead refer to the relevant measure as ∆S2. In the actual signatures considered
in this paper, we will primarily focus on counting events so that for n events of a particular
signature, we shall assign a variance of (σ(n))2 = n+ 1.

We shall say that two models are distinguishable provided:

∆S2 (M1,M2) > γN (p), (3.13)

where γN (p) is some cutoff greater than one which depends on the number of signals, and
the confidence level 0 ≤ p ≤ 1. In the context of an actual chi-square, γN (p) is implicitly
defined by the relation:

Γ
(
N

2
,
N

2
γN (p)

)
= Γ

(
N

2

)
(1− p). (3.14)

In the above, Γ(a, b) denotes the incomplete upper gamma function. In this paper we shall
use this value of γN (p) as a rough measure of distinguishability, and will compare models
at the p = 99% level.

Depending on which signatures turn out to be useful in discriminating between different
models, the actual sum over signals may in principle depend on the type of comparison
performed. In comparing mSUGRA models and low scale mGMSB models with F-theory
GUTs, we will exclusively use the 10 signatures detailed in table 2 of subsection 3.1.
This defines a particular measure which we refer to as ∆S2

(A). Later in section 4 when
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we compare F-theory GUTs with high scale mGMSB scenarios as well as other F-theory
GUT models, we will find that there are in fact two classes of signatures, one set of
10 signatures which produce relatively distinguishable footprints, and another set of 13
signatures (also determined by the footprint method) detailed in table 4 of subsection 4.1
which are especially helpful in a ∆S2 analysis. These signatures define another measure,
which we shall refer to as ∆S2

(D). Indeed, one can envision first using the ∆S2
(A) measure

to broadly distinguish between models, with ∆S2
(D) serving as a more refined measure of

distinguishability. We shall say that we can distinguish between models for these ∆S2

measures provided:

∆S2
(A) > γ10(0.99) = 2.3 (3.15)

∆S2
(D) > γ13(0.99) = 2.1. (3.16)

3.5 F-theory versus small A-term mSUGRA

We now analyze the extent to which LHC observables are capable of distinguishing between
F-theory GUTs and other well-motivated extensions of the MSSM. We begin by considering
the case of mSUGRA models with small A-terms. Further details on the precise scan over
small A-term mSUGRA (mSUGRA(SA)) models considered may be found in appendix A.

As a first check, we first show to what extent these models are distinguishable as
distinct particle physics models. To this end, we have computed the value of ∆P 2 between
F-theory GUT models and mSUGRA(SA) models. To gauge the level of distinguishability
in the “worst case scenario”, we next minimized ∆P 2 over all such mSUGRA(SA) models:

PSA (N5,Λ,∆PQ) = min
mmSUGRA(SA)

∆P 2(mF ,mmSUGRA(SA)), (3.17)

scanning over the parameters M1/2, m0, A and tanβ over the range of small A-terms
specified in appendix A. For a generic F-theory GUT model, the value of PSA satisfies
the inequality:

PSA (N5,Λ,∆PQ) & 0.15. (3.18)

See figure 7, and figure 31 in appendix F for contour plots of the one and three messenger F-
theory GUT models. In some sense, this level of distinguishability is to be expected, because
mSUGRA models typically exhibit a more compressed spectrum where the masses of the
squarks and sleptons are more degenerate. The fact that in gauge mediation models, there
is more separation in the mass of the squarks, sleptons and gauginos reflects this difference.

Having established that at a theoretical level it is possible to distinguish between
F-theory GUTs and small A-term mSUGRA models, we now determine experimental ob-
servables which discriminate between these two classes of models.

3.5.1 Footprint analysis

In this subsection we use the general footprint method described earlier to compare the
signatures of F-theory GUTs with small A-term mSUGRA models. To this end, we have
computed LHC signatures from the models simulated using PGS. Upon constructing a
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Figure 7. Contour plot of the value of ∆P 2 obtained by fixing a particular value of Λ and ∆PQ of
an F-theory GUT model with N5 = 1, and minimizing with respect to all small A-term mSUGRA
models. We adopt a rough criterion for theoretical distinguishability specified by the requirement
that ∆P 2 > 0.01. By inspection, ∆P 2 is greater than 0.15, indicating that such models are
distinguishable at the theoretical level from F-theory GUTs. See figure 31 in appendix F for a
similar plot for N5 = 3 F-theory GUTs.

footprint for these models, we next compare correlations of different pairs of signatures by
making two dimensional plots. From these plots, we can distinguish at a qualitative level
between F-theory models and small A-term mSUGRA models. In particular, for certain
pairs of signatures, there is little to no overlap between the two classes of models. See
the plots in figure 8 for examples of such signature plots. We find that signatures which
distinguish between the two classes of models typically include b-jets and τ leptons.

The differences in LHC signatures between these classes of models can be understood
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Figure 8. Footprint of LHC signatures (without SM background) for distinguishing F-theory GUTs
and small A-term mSUGRA models with 5 fb−1 integrated luminosity. The red circle denotes the
4σ deviation from the SM background.
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based on their different spectra. As mentioned before, F-theory GUTs have a light τ̃1, and
so in models with a bino NLSP, the subsequent decay of the τ̃1 will produce more events
with taus compared to electrons and muons. Additional leptons will be generated through
the decays of the Z, h and t.

This is to be contrasted with the case of small A-term mSUGRA models where leptons
typically do not originate from the decay of the τ̃1, but rather, from the decays of the Z,
h and t. Since these decays are typically accompanied by b-jets, it follows that by vetoing
on events with b-jets, we can expect a greater number of lepton events in F-theory GUTs
in comparison with small A-term mSUGRA models. This distinction in the number of
leptons to hadrons in various events explains why it is possible to distinguish between such
models using signatures with taus and signatures with lepton + 0 b-jets.

3.5.2 ∆S2 analysis

We now show that with only 5 fb−1 of simulated LHC data, it is also possible to distinguish
at a more quantitative level between F-theory GUTs and small A-term mSUGRA models.
In comparing F-theory GUTs and small A-term mSUGRA models, we included all 10 of
the signatures detailed in table 2 of subsection 3.1. These signatures are not identical to
the ones presented for the footprint plots, but instead appear to provide a cleaner way to
minimize over ∆S2. We shall refer to the corresponding measure defined by signature list
A as ∆S2

(A). Much as in our discussion of ∆P 2, we have computed the value of ∆S2
(A)

between F-theory GUTs and small A-term mSUGRA models. The value of ∆S2
(A) between

an F-theory GUT point and a typical mSUGRA point is typically far greater than 10, and
so such models are easily distinguished. However, it is still possible that certain models
could share similar characteristics with F-theory GUTs. Fixing a given F-theory model,
we next scanned over all of the relevant mSUGRA models, minimizing the corresponding
value of ∆S2

(A):

SSA (N5,Λ,∆PQ) = min
mmSUGRA(SA)

∆S2
(A)(mF ,mmSUGRA(SA)), (3.19)

where here, the minimization is performed over all small A-term mSUGRA models of
potential interest. See figure 9 and figure 32 in appendix F for density plots of SSA for
N5 = 1 and 3 as a function of Λ and ∆PQ at 5 fb−1 of LHC data. A similar result holds in
the case of two messenger F-theory GUT models.

These plots illustrate that it is typically possible to distinguish between F-theory GUTs
and mSUGRA models. It is only by minimizing over all such points that we even come
close to saturating the cutoff for distinguishability. In a certain sense, this is to be expected
because the spectra and branching fractions are typically different in such models, so that
in principle, there should exist signals which distinguish between these two possibilities.

3.6 F-theory versus large A-term mSUGRA

In the previous subsection we found that it is indeed possible to distinguish between
small A-term mSUGRA models and F-theory GUTs. Large A-term mSUGRA models
(mSUGRA(LA)) can also potentially mimic F-theory GUTs. Indeed, since the universal
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Figure 9. Density plot of ∆S2
(A) defined by the signature list in table 2 of subsection 3.1 comparing

the minimal value of a given N5 = 1 F-theory GUT model with a scan over small A-term mSUGRA
models. The signals used are obtained with 5 fb−1 of simulated LHC data. Here, we have used a
rough notion of distinguishability based on 99% confidence and 10 signals so that at ∆S2

(A) > 2.3
we shall say that two models are distinguishable. By inspection, for most of the plot, it is possible
to distinguish between F-theory GUTs and mSUGRA models. See figure 32 in appendix F for a
similar plot in the case of N5 = 3 F-theory GUTs.

trilinear term in mSUGRA models couples the scalars of the theory, when the Higgs devel-
ops a vev, this will induce a shift in the soft masses. This by itself is important, because it
can allow mSUGRA models to mimic the effects of the PQ deformation. On the other hand,
introducing a large A-term changes the branching fractions in the decay of scalars. Thus,
one might hope that even if the the mass spectra are somewhat similar, the decay channels
in large A-term mSUGRA models could still be distinguished from F-theory GUTs.

To a certain extent, it is indeed possible at a theoretical level to distinguish
mSUGRA(LA) and F-theory GUT scenarios, although in comparison with small A-term
models, the soft terms are closer to those of F-theory GUTs. Fixing a given F-theory GUT
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Figure 10. Contour plot of the value of ∆P 2 obtained by fixing a particular value of Λ and ∆PQ of
an F-theory GUT model with N5 = 1, and minimizing with respect to all large A-term mSUGRA
models. We adopt a rough criterion for theoretical distinguishability specified by the requirement
that ∆P 2 > 0.01. By inspection, ∆P 2 is greater than 0.05. This is to be contrasted with the level
of distinguishability found for small A-term mSUGRA models where ∆P 2 is greater than 0.15. See
figure 33 in appendix F for a similar plot for F-theory GUTs with N5 = 3.

model, and minimizing over all mSUGRA(LA) models, we define:

PLA (N5,Λ,∆PQ) = min
mmSUGRA(LA)

∆P 2(mF ,mmSUGRA(LA)). (3.20)

we have computed the value of PLA for one, two and three messenger models.
In comparison to the case of small A-term mSUGRA models, the value of PLA is

typically somewhat smaller, but is still bounded below by:

PLA (N5,Λ,∆PQ) & 0.05. (3.21)
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Figure 10 and figure 33 in appendix F show contour plots of PLA as a function of Λ and
∆PQ. Note that in comparison to the small A-term mSUGRA model contour plots depicted
in figure 7 and figure 31 in appendix F, the soft parameters of this class of models can more
effectively mimic F-theory GUTs.

3.6.1 Footprint analysis

In this section, we discuss whether the footprints of large A-term mSUGRA and F-theory
GUTs can be used to distinguish these two classes of models. As before, we generated
two dimensional footprints using the 103 signatures listed in appendix C. By inspecting
many footprint plots, we have found a few signatures which can be used to distinguish
F-theory GUTs and large A-term mSUGRA models as in figure 11. These plots also show
that there is still a large overlap in the region corresponding to models with relatively
small cross section. The primary overlap region is mainly comprised of two and three
messenger F-theory GUT models. For this reason, we find that it is not possible to cleanly
distinguish F-theory GUTs with multiple messengers in the bino NLSP regime from large
A-term mSUGRA models with our implementation of signatures and limited integrated
luminosity. We also notice that the simple signatures involving lepton as well as tau
and b-jet cannot distinguish these two classes of models. As we shall explain in greater
detail in subsection 3.6.3, this can be roughly understood from the fact that the two and
three messenger F-theory GUT models share the same decay topology with large A-term
mSUGRA models. For the two messenger case, there are differences in the lightest stau
and Higgsino mass in the region of small Λ. Nevertheless, these distinctions do not seem
to be sufficient for producing discriminating LHC signatures with 5 fb−1 of LHC data.
On the other hand, figure 11 illustrates that multi-jet signatures partially resolve this
“degeneracy”. This could be due to the difference in the branching ratio of gluino decay
into tops and stops.

3.6.2 ∆S2 analysis

In this section we discuss the extent to which F-theory GUTs can be distinguished from
large A-term mSUGRA models. We find that although single messenger models can typi-
cally be distinguished from such large A-term scenarios, in the case of two and three mes-
sengers, the value of ∆S2 does not effectively distinguish between all such F-theory GUTs
and large A-term mSUGRA (mSUGRA(LA)) models. As in the case of the small A-term
mSUGRA models, we have used the 10 signatures detailed in table 2 of subsection 3.1. We
find that there is typically a small region at small and large Λ where it is possible to distin-
guish multiple messenger F-theory GUT models from mSUGRA(LA) models. Although in
many cases the value of ∆S2

(A) between F-theory GUTs and mSUGRA(LA) models is on
the order of 10 or more, other mSUGRA(LA) models can effectively mimic the signatures
of F-theory GUTs.

To quantify the extent to which F-theory GUTs can be distinguished from such models,
we have computed the value of the function:

SLA (N5,Λ,∆PQ) = min
mmSUGRA(LA)

∆S2
(A)(mF ,mmSUGRA(LA)) (3.22)
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Figure 11. Footprint of LHC signatures (without SM background) for distinguishing F-theory
GUTs and large A-term mSUGRA models with 5 fb−1 integrated luminosity. The red circle denotes
the 4σ deviation from the SM background.
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Figure 12. Density plot of ∆S2
(A) defined by the signature list in table 2 of subsection 3.1 comparing

the minimal value of a given N5 = 1 F-theory GUT model with a scan over large A-term mSUGRA
models. The signals used are obtained with 5 fb−1 of simulated LHC data. Here, we have used a
rough notion of distinguishability based on 99% confidence and 10 signals so that at ∆S2

(A) > 2.3
we shall say that two models are distinguishable. The plot shows the minimal value of ∆S2 for
a fixed F-theory GUT point. By inspection, we see that just as for the small A-term case, single
messenger F-theory GUTs can be distinguished from mSUGRA models over much of the range of
interest. This is in contrast to the case of multiple messenger models where the same signatures
do not cleanly distinguish between F-theory and mSUGRA(LA) models. See figures 34 and 35 of
appendix F for the analogous plots in the multiple messenger case.

obtained by minimizing over all large A-term mSUGRA models of interest. Figure 12 shows
that for N5 = 1, typically SLA > 2.3. On the other hand, figures 34 and 35 in appendix F
show that for N5 = 2 and N5 = 3, it is more difficult to distinguish F-theory GUTs from
large A-term scenarios.

3.6.3 More on the multiple messenger case

In the previous subsections we found that single messenger F-theory GUT models are
distinguishable from large A-term mSUGRA models, both at the level of footprint plots
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and at a semi-quantitative level using the measures ∆S2. On the other hand, the large A-
term mSUGRA models appear to more effectively mimic the multiple messenger F-theory
GUTs with a bino NLSP. In this subsection we discuss some further features of such models
which partially explain the observed overlaps in signatures.

Because of the similarity in the stau and neutralino masses, the decay of χ̃0
2 via an

on-shell τ̃1 can enable large A-term models to mimic the leptonic signals of F-theory GUTs.
Figure 13 shows the value of the LSP mass versus the branching ratio χ̃0

2 → τ̃1 + τ for a
range of mSUGRA(LA) models. The large variation in values implies that such models can
effectively mimic the value of the branching fraction present in F-theory GUTs. Further,
although we have seen that single messenger models can indeed be distinguished from
mSUGRA(LA) models, some of the parameters of such models such as the masses of the
lightest neutralinos χ̃0

1 and χ̃0
2 are quite similar. Figure 14 shows that the mass of the

lightest stau can essentially cover the entire range of values between mχ̃0
1

and mχ̃0
2
. Note,

however, that at smaller values of the neutralino mass, a gap exists in the range of values
for the lightest stau mass. Since multiple messenger F-theory GUTs with a bino NLSP
typically have a τ̃1 which is close in mass to χ̃0

1, this difference may lead to observable
differences between multiple messenger F-theory GUTs and mSUGRA(LA) models.

Large A-term models can also mimic F-theory GUT signals controlled by the decay of
colored particles. In large mSUGRA(LA) models, the main decay channels for the gluino
are g̃ → t̃1t, g̃ → b̃1b and g̃ → b̃2b. See figure 15 for a plot of each of these branching ratios.
The total branching ratio into third generation quarks is around 90%. Since the gluino
decay is a two-body process, multi-jets plus missing ET signature should distinguish these
mSUGRA models with single messenger F-theory GUTs, as we have already seen. Indeed,
this is consistent with the discussion in section 2 that the gluino decays via a three-body
process in single messenger models. Note, however, that in two and three messenger F-
theory GUTs, the gluino decay is also a two body process and is quite similar to large
A-term mSUGRA models. In fact, the total branching ratio to third generation squarks
and quarks is respectively 100% and 80%. This explains why simple b-jet counting does
not help in distinguishing between F-theory models and large A-term mSUGRA models.
Further note that for two messenger F-theory GUTs, there is a larger branching ratio to
t̃1t, which is, however, not present in the three messenger case. At first, this would seem
to provide a promising class of processes to focus on since the increase in the number of
top quarks from gluino decay will leads to an increase in the number of W bosons, which
would seemingly produce a sizable difference in the lepton signatures. Unfortunately, the
heavy neutralinos χ̃0

3,4 are generally lighter in F-theory models, and thus give rise to softer
gauge bosons and subsequently produced leptons. This leads to opposite effects on the
lepton signatures compared to the large t̃1t branching ratio. Therefore, at least in the case
of low integrated luminosity, distinguishing F-theory models with two and three messenger
from large A-term mSUGRA models appears to be much more challenging at the LHC.

To further distinguish between large A-term scenarios and F-theory GUTs, increased
luminosity will certainly help (see for example equation (3.6) of subsection 3.1. At the
same time, one could look for signatures which are sensitive to the t̃1t channel of gluino
decay. In addition, tanβ enhanced signatures could also be useful, since, as figure 16
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Figure 13. Plot of second neutralino branching fraction χ̃0
2 → τ̃±1 + τ∓ in large A-term mSUGRA

models versus the LSP mass. The large distribution of values indicates that such models can
effectively mimic the branching fraction present in other models, such as F-theory GUTs. Note,
however, that there is a gap in the lower left part of the distribution. The relation between the
mass of the stau and the two lightest neutralinos in this region is similar to that of two and three
messenger F-theory GUTs with a bino NLSP.

shows, large A-term mSUGRA models typically have larger tanβ than F-theory GUTs.
An effective observable may come from rare B-decays such as Bs → µ+µ− where the
additional gluino contribution to the decay rate can be significantly enhanced by a factor
proportional to tan6 β in the large tanβ regime (see [45] for a recent study). However, a
full analysis of these possibilities is beyond the scope of this paper, and we leave this issue
for future investigations.

Beyond collider signatures, astrophysical probes could provide another means by which
to distinguish large A-term mSUGRA models from multiple messenger F-theory GUTs. In
mSUGRA models, the lightest neutralino provides a natural dark matter candidate. This is
in contrast to the situation in F-theory GUTs where the neutralino is unstable, eventually
decaying to a gravitino LSP. The difference in the nature of the LSP will affect the dark
matter relic density. For example, in the bino LSP case, generating an acceptable dark
matter relic density from binos requires a light stau which is almost degenerate in mass
with the LSP. This further criterion would exclude most of the large A-term mSUGRA
models in our study, thus providing better separation between F-theory GUTs and large
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Figure 14. Plot of the mass of the lightest stau in large A-term mSUGRA models versus the LSP
mass. The upper line in the plot corresponds to mχ̃0

2
, while the lower one corresponds to mχ̃0

1
. By

inspection, the mass of the τ̃1 effectively covers the entire range between the mass of χ̃0
1 and χ̃0

2, so
that such models can effectively mimic the mass hierarchy present in F-theory GUTs.

A-term models. In addition, both direct and indirect dark matter detection experiments
can potentially see evidence of a neutralino LSP, but not gravitinos. Therefore, non-collider
signature could provide an additional means by which to distinguish F-theory GUTs and
mSUGRA models.

3.7 F-theory versus low scale mGMSB

In this subsection we compare F-theory GUTs with minimal GMSB scenarios with a low
messenger scale, deferring a comparison with high messenger scale scenarios to section 4.
Returning to the discussion near (3.9), recall that a stau NLSP low scale mGMSB model
can potentially mimic some of the signatures of F-theory GUTs with a bino NLSP. Indeed,
all other scenarios have qualitatively distinct behavior, and so we shall focus on this one
remaining case.

Even though the presence of signatures with missing ET can potentially be mimicked,
there are still important differences in both the soft parameters, and collider signatures. As
in our comparison with mSUGRA models, we have scanned over low scale mGMSB models
with a stau NLSP (see appendix B for a description of this scan), and computed the value
of ∆P 2 between these models and F-theory GUTs. Minimizing over all such models, we
have determined the value of

PLO (N5,Λ,∆PQ) = min
mmGMSB(LO)

∆P 2(mF ,mmGMSB(LO)). (3.23)
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Figure 15. Top figure: the squark mass distribution (t̃1, b̃1, d̃R) in large A-term mSUGRA models.
The upper line corresponds to mg̃ and the lower line to mg̃ − mt. Bottom figure: the gluino
branching fraction in large A-term mSUGRA models versus the LSP mass in the decay channels
g̃ → t̃1 + t, g̃ → b̃1 + b, and g̃ → b̃2 + b.

Figure 17 and figure 36 in appendix F show contour plots of PLO as a function of Λ and
∆PQ. These plots illustrate that

PLO & 0.1. (3.24)
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Figure 16. Plot of tanβ in large A-term mSUGRA models versus the mass of the LSP. This is to
be compared with the values of tanβ in F-theory GUTs which have been overlaid on the same plot
as a function of Λ (axis not shown). The N5 = 3 case is omitted because it is similar to the N5 = 2
case. This plot shows that the value of tanβ in large A-term mSUGRA models is typically larger
than that in F-theory GUTs. In particular, tanβ enhanced processes could therefore potentially
distinguish between F-theory GUTs and such mSUGRA models.

It is interesting to note that although both classes of models share the same mechanism
for the mediation of supersymmetry breaking, the soft terms of large A-term mSUGRA
models can more effectively mimic the soft terms of F-theory GUTs. Having established
this distinction, we now discuss footprints which distinguish between the signatures of these
two classes of models.

3.7.1 Footprint analysis

The footprint of low scale mGMSB models with a stau NLSP can be easily separated from
that of F-theory GUTs by using 0τ and ≥ 2τ signatures as seen in figure 18. As explained
in section 3.2, this is because there exist long decay chains where the lightest neutralinos
decay into a stau and then to a gravitino, leading to events with many taus.

3.7.2 ∆S2 analysis

Having seen that the footprints of F-theory GUTs are quite distinct from low scale mGMSB
models, we next compute using the same 10 signatures detailed in table 2 of subsection 3.1
the value of ∆S2

(A) between these two classes of models. Minimizing over all such low scale
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Figure 17. Contour plot of the value of ∆P 2 obtained by fixing a particular value of Λ and ∆PQ of
an F-theory GUT model with N5 = 1, and minimizing with respect to all low scale minimal GMSB
models with a stau NLSP. We adopt a rough criterion for theoretical distinguishability specified by
the requirement that ∆P 2 > 0.01. By inspection, ∆P 2 is greater than 0.1, indicating that such
models are distinguishable at the theoretical level from F-theory GUTs. See figure 36 in appendix
F for a similar plot for N5 = 3 F-theory GUTs.

models, we define the function:

SLO (N5,Λ,∆PQ) = min
mmGMSB(LO)

∆S2
(A)(mF ,mmGMSB). (3.25)

In this case, we find that over the entire range of parameters scanned for Λ and ∆PQ,

SLO (N5,Λ,∆PQ) ≥ 2.3 (3.26)

when N5 = 2, 3. This is the threshold for distinguishability at 99% confidence, and so we
find that it is relatively easy to distinguish between these models. Moreover, figure 19 shows
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Figure 18. Footprint of LHC signatures (without SM background) for distinguishing F-theory
GUTs and low scale mGMSB models with a stau NLSP with 5 fb−1 integrated luminosity. The red
circle denotes the 4σ deviation from the SM background.

that even in the case of single messenger F-theory GUT models, much of the range of F-
theory GUTs is distinguishable using these same signatures. This illustrates that in general,
we can expect to distinguish between F-theory GUTs and low scale mGMSB models.

4 Determination of F-theory parameters

In this section we determine the extent to which two distinct F-theory GUT models can
be distinguished from one another. Note that since high messenger scale mGMSB models
correspond to a subclass of F-theory GUTs with ∆PQ = 0, performing this analysis will
also address whether F-theory GUTs can be distinguished from a minimal GMSB model
with a high messenger scale.

Using the same ∆P 2 measure of theoretical distinguishability based on soft terms
utilized earlier, we have computed the value of ∆P 2 between a fixed F-theory GUT specified
by the parameters N (0)

5 ,Λ(0),∆(0)
PQ, and the class of all F-theory GUTs:

PFTH (N5,Λ,∆PQ) = ∆P 2
(
mF

(
N

(0)
5 ,Λ(0),∆(0)

PQ

)
,mF (N5,Λ,∆PQ)

)
. (4.1)

We find that for each N5, PFTH achieves a local minimum only for a small strip of
values of Λ, which typically extends over a range of values for ∆PQ. However, the absolute
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Figure 19. Density plot of ∆S2
(A) defined by the signature list in table 2 of subsection 3.1 comparing

the minimal value of a given N5 = 1 F-theory GUT model with a scan over low scale mGMSB models
with a stau NLSP. The signals used are obtained with 5 fb−1 of simulated LHC data. Here, we
have used a rough notion of distinguishability based on 99% confidence and 10 signals so that at
∆S2

(A) > 2.3 we shall say that two models are distinguishable. By inspection, much of the scanned
region of F-theory GUTs is distinguishable from such models.

minimum of PFTH is always smaller when N5 = N
(0)
5 . Typically, single messenger models

are more easily distinguished from multiple messenger models since the spectrum and soft
terms of single messenger F-theory GUTs are distinct. For example, in single messenger
models, some of the squarks are typically heavier than the gluino, whereas in multiple
messenger models, the gluino is always heavier. Due to the similarities in the sparticle
spectrum, two and three messenger F-theory GUTs can exhibit similar behavior.

Fixing a representative single messenger model with Λ(0) = 1.28×105 GeV and ∆(0)
PQ =

222 GeV as the “LHC point”, figure 20 shows that in a scan over all single messenger models,
there is a single local minimum for ∆P 2. In addition, while there is certainly a similar local
minimum present in the scan over three messenger model shown in figure 37 of appendix
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Figure 20. Contour plot of ∆P 2 between a fixed F-theory GUT model with N5 = 1, Λ =
1.28 × 105 GeV and ∆PQ = 222 GeV (indicated by red X), and single messenger F-theory GUT
models. We adopt a rough criterion for theoretical distinguishability specified by the requirement
that ∆P 2 > 0.01. This figure shows that ∆P 2 minimizes in the vicinity of the representative point,
and that in particular, there is no degeneracy in the soft terms in a scan over single messenger
models. However, figure 37 of appendix F shows that in plots of ∆P 2 between this point and three
messenger models, there are still regions where a local minimum is potentially possible, although
this value is greater than 0.02.

F, the minimal value of ∆P 2 in such cases is bounded below by roughly 0.03, so that with
our rough criterion, such models are distinguishable. Similar considerations apply for other
representative “LHC points” with a single messenger. By contrast, figure 21 illustrates that
when the “LHC point” corresponds to a two messenger model with Λ(0) = 8 × 104 GeV
and ∆(0)

PQ = 104 GeV, there exists a strip of three messenger models with ∆P 2 < 0.01,
which falls below the rough bound we have adopted for distinguishability. Even so, it is
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Figure 21. Contour plot of ∆P 2 between a fixed F-theory GUT model with N5 = 2, Λ =
8 × 104 GeV and ∆PQ = 104 GeV and three messenger F-theory GUT models. This figure shows
that even though the number of messengers are different, the value of ∆P 2 can minimize to a
value below our rough criterion for distinguishability given by 0.01. Note, however, that although
∆P 2 < 0.01, the range of values for which ∆P 2 < 0.005 is far smaller, indicating that at least in
principle, two and three messenger models are distinguishable at a theoretical level.

important to note that at no point does ∆P 2 appear to vanish. With this in mind, the
fact that ∆P 2 can be small should be viewed as a rough guide for what to expect when
searching for discriminating signatures.

In the remainder of this section we investigate the extent to which different F-theory
GUTs generate distinguishable experimental signatures. To this end, in subsection 4.1 we
first list candidate signatures of interest which have strong dependence on the parameters
of F-theory GUTs. Using these signatures, we compute the corresponding value of ∆S2
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between a fixed “LHC point” and various F-theory GUTs. In particular, we show that this
type of analysis is capable of determining both N5 and Λ, and moreover, can distinguish
between scenarios with small and large PQ deformation. Restricting to the case of single
messenger F-theory GUTs and a particular value of Λ, we next compute the value of ∆S2

between models with different values of ∆PQ. We find that at 5 fb−1 of simulated data,
∆PQ can be determined up to an uncertainty of ∼ ±80 GeV, while at 50 fb−1, this improves
to an uncertainty of ∼ ±10 GeV. In particular, this shows that the LHC is indeed sensitive,
albeit indirectly, to string scale physics! Finally, although outside the main focus of this
paper, in appendix E we consider the sensitivity of the endpoint of the ditau invariant mass
distribution as a function of ∆PQ.

4.1 Signature list

We now proceed to discuss signatures which are especially sensitive to N5, Λ and ∆PQ. As
explained in subsection 3.1, we have generated a total of 103 LHC signatures for all 1530
F-theory GUT models. However, not all of these signatures are sensitive to changes in the
parameters of F-theory GUTs. In some cases, either poor statistics, or a correlation in
seemingly different signatures can obstruct the use of these observables. A general discus-
sion of selecting signatures can be found in reference [43]. As explained there, there exists
some optimal choice and number of signatures which minimize the luminosity needed for
distinguishing between two models. Although a systematic optimization is certainly useful,
it goes beyond the scope of this paper. For our study, we will instead consider a manual
selection of signatures by examining the footprint of F-theory GUTs using all possible
pairs of signatures. For example, to find the signatures sensitive to N5, we examined all
possible two-dimensional plots constructed out of 103 signatures for models with different
N5. We then selected by examining such plots a class of signatures which do not appear
to share any significant correlations. One such set of signatures which are especially help-
ful in a footprint analysis are shown as signature list B in table 3. Figure 22 illustrates
an example of some signatures which distinguish between single and multiple messenger
models. Notice that the one messenger models are more easily separated from the two and
three messenger models. This is consistent with the fact explained in section 2 that these
models have different gluino and squark decay topologies. Similarly, we have also find a
set of signatures referred to as signature list C which are sensitive to the PQ deformation
parameter ∆PQ. Figure 23 shows two signatures as functions of ∆PQ. Finally, in our ∆S2

analysis, we have used signature list D given in table 4.
In tables 3 and 4, the corresponding signatures solely consist of inclusive multijet (with

particular PT cuts) plus missing ET signatures, or signatures with one more lepton or tau
(with particular PT cuts). This is not so surprising as most other more exclusive event
selections such as those based on two or three lepton signatures have low statistics at 5 fb−1.
Even assuming sufficient statistics, we find that in comparison with one lepton signatures,
such signatures typically do not distinguish as cleanly between various models.

We now discuss in greater detail the signatures in table 3. The first two signatures in
signature list B are multijet + missing ET signatures. We indicate PT thresholds of jets in
the parentheses. The detailed selection criteria are provided in table 1 of subsection 3.1.
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Signature List B
1 ≥ 4 jets(PT > 100, 50, 50, 50)
2 ≥ 6 jets(PT > 150, 150, 100, 100, 50, 50)
3 0b(PT > 50),≥ 2jets(PT > 150, 100)
4 ≥ 2b(PT > 50),≥ 2jets(PT > 150, 100)
5 0l(PT > 20),≤ 4jets(PT > 50), Meff > 1500

Signature List C
1 ≥ 6jets(PT > 150, 150, 100, 100, 50, 50)
2 ≥ 1τ(PT > 40),≥ 2jets(PT > 150, 100)
3 ≥ 1l(PT > 40),≥ 4jets(PT > 100, 50, 50, 50)
4 0τ(PT > 10),≥ 4jets(PT > 100, 50, 50, 50)
5 ≥ 1τ(PT < 40),≥ 2jets(PT > 70)
6 0l(PT > 20),≤ 4jets(PT > 50), 6ET > 500

Table 3. The collection of signatures which are effective for distinguishing models with distinct
values of N5 (List B) and ∆PQ (List C) using footprint plots. All cuts are in units of GeV. Table 4
contains an alternate set of signatures which are especially helpful in distinguishing models using
the ∆S2 measure.

Signature List D
1 ≥ 4jets(PT > 100, 50, 50, 50)
2 ≥ 4jets(PT > 250, 250, 100, 100)
3 ≥ 2jets(PT > 350, 350)
4 ≥ 6jets(PT > 150, 150, 100, 100, 50, 50)
5 0τ(PT > 20),≥ 4jets(PT > 100, 50, 50, 50)
6 1τ(PT > 40),≥ 4jets(PT > 100, 50, 50, 50)
7 1b(PT > 50),≥ 4jets(PT > 100, 50, 50, 50)
8 0l(PT > 10),≤ 4jets(PT > 50), Meff > 1400
9 0l(PT > 10), ≤ 4jets(PT > 50), Meff > 1400, Minv(jets) > 800
10 0l(PT > 10), ≥ 5jets(PT > 50), Meff > 1400
11 0l(PT > 10), ≥ 5jets(PT > 50), Meff > 800, PT (4th hardest jet) > 140
12 ≥ 1l(PT > 10), ≥ 5jets(PT > 50), Meff > 1400
13 ≥ 1l(PT > 10), ≥ 5jets(PT > 50), 0.1 < 6ET /Meff < 0.3

Table 4. The collection of LHC signatures used in our ∆S2 analysis. All cuts are in units of GeV.
In all signatures where a cut is not explicitly stated, we have imposed a base cut of 6ET > 100 GeV
and Meff > 1200 GeV.

These multijet signatures with different choices of thresholds are chosen to capture the
differences in the jet multiplicity and PT distributions, and will thus be sensitive to the
gluino and squark decays. The signatures 0b(PT > 50),≥ 2 jets and 2b(PT > 50),≥ 2 jets
are selected by veto b-jets or requiring at least two b-jets with PT threshold given in the
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Figure 22. Footprint of F-theory models with different N5 with 5 fb−1 of integrated luminosity.
These plots shows the footprint can distinguish F-theory based models with different numbers of
messengers N5.
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parentheses from the inclusive selections ≥ 2jets(PT > 150, 100). The remaining signatures
in list B are 0l(PT > 20),≤ 4jets(PT > 50) with Meff > 1500. For signature list C, the
signatures are basically inclusive signatures with one lepton, one tau and multijets. The
reason why these signatures are sensitive to ∆PQ can be traced back to the shift in the
masses of t̃1 and τ̃1, though the detailed reason could be complicated due to the mixture
of different production and decay channels. Similar considerations apply for signature list
D in table 4.3 Here, it is important to stress that different analyses are better suited to
different sets of signatures. For example, in our footprint analysis, we find that signatures
from table 3 can typically distinguish between models with different values of N5 and ∆PQ.
On the other hand, we find that with more quantitative measures such as ∆S2, the class of
signatures provided by table 4 are instead better suited for distinguishing between distinct
F-theory GUTs. For this reason, we shall often refer to this measure as ∆S2

(D).
Given the prominent role of the PQ deformation in F-theory GUTs, it is important

to find signatures sensitive to the value of ∆PQ. Because the effects of ∆PQ are most
prominent for bino NLSP F-theory GUTs with a single messenger, we confine our discussion
to this case. As explained in section 2, the PQ deformation alters both the masses and
branching fractions. A non-zero PQ deformation leads to two major observable effects.
First, the charginos produced either directly or from gluino and squark decay will undergo
cascade decays of the form χ̃±1 → τ̃±1 ντ → χ̃0

1τ
±ντ . The branching ratio of this channel will

increase as ∆PQ increases, and at the same time, the taus produced from the decay of the
τ̃1 will become less energetic. Based on these changes, our expectation is that signatures
related to τ ’s or soft jets in the final state will be helpful in distinguishing these models.
Second, in comparison to the other squarks, the mass of lightest stop t̃1 is more sensitive to
∆PQ. This leads to changes in the branching ratio of the gluino decay into third generation
quarks, which is particularly important in the case of single messenger models. This can
be probed by using signatures related to third generation quarks in the final state.

4.2 Determining N5 and Λ

Having established a set of signatures with strong dependence on the parameters of F-
theory GUTs, in this section we compute the value of ∆S2

(D) specified by the signatures
of table 4 between a given F-theory GUT “LHC point”and all other F-theory GUTs.
Minimizing ∆S2

(D) over the class of all F-theory GUTs with a bino NLSP, we can then
in principle extract the corresponding values of N5 and Λ. In computing the value of
∆S2

(D) between models with a single messenger, and models with multiple messengers, we
find that ∆S2

(D) is typically greater (sometimes far greater) than 10. Based on this, we
conclude that it is typically possible to distinguish single messenger models from multiple
messenger models. On the other hand, distinguishing between multiple messenger models
appears more challenging. As an explicit example, figure 24 shows the value of ∆S2

(D)

between three messenger F-theory models and a two messenger F-theory GUT model with
Λ = 8×104 GeV and ∆PQ = 104 GeV, which contains a region of models with ∆S2

(D) < 2.3.
Indeed, as explained earlier, the mass spectra are much closer in such cases. Even so, the

3We note that the selection cuts used in signature list D are slightly different from those which appear

in appendix C.
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Figure 23. LHC signatures as functions of ∆PQ for F-theory GUTs with (N5 = 1,Λ = 1.2 ×
105 GeV) and (N5 = 2,Λ = 6.5× 104 GeV). The signatures are simulated with 5 fb−1 of integrated
luminosity. These plots show that the LHC signatures are sensitive to the “stringy” parameter
∆PQ.

– 48 –



J
H
E
P
1
0
(
2
0
0
9
)
0
3
9

45 000 50 000 55 000 60 000 65 000 70 000
0

20

40

60

80

100

L HGeVL

D
PQ
HG

eV
L

0

³ 2.1

DS2
³ 2.1

Figure 24. Density plot of ∆S2
(D) defined by the signature list in table 4 of subsection 4.1 between

a two messenger F-theory GUT model with Λ = 8 × 104 GeV and ∆PQ = 104 GeV and three
messenger F-theory GUTs. Using a rough notion of distinguishability compatible with a chi-square
measure, models with ∆S2

(D) > 2.1 are distinguishable from this “LHC point” at the 99% level for
13 signals. Note that ∆S2

(D) possesses a local minimum, even though the number of messengers
is incorrect. This illustrates that distinguishing N5 = 2 and N5 = 3 is more subtle with limited
luminosity.

decay of the gluino is different depending on the number of messengers (for example, see
the branching fractions of (2.29) in subsection 2.5.2). Although beyond the scope of this
paper, it would be interesting to study whether signatures sensitive to the decay g̃ → t̃t

could provide a means to distinguish between two and three messenger F-theory GUTs.
Nevertheless, this analysis does establish that it is indeed possible to distinguish be-

tween single and multiple messenger models. Assuming that the discrete parameter N5 has
been determined, the largest difference between various models is the value of Λ. Focussing
for simplicity on the case of a single messenger model, we find that the value of ∆S2

(D) min-
imizes at a single value of Λ. As an explicit example, figure 25 shows the value of ∆S2

(D)
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Figure 25. Density plot of ∆S2
(D) defined by the signature list in table 4 of subsection 4.1 between

a single messenger F-theory GUT model with Λ = 1.44 × 105 GeV and ∆PQ = 164 GeV and
other single messenger F-theory GUTs. Here, we have used a rough notion of distinguishability
based on 99% confidence and 13 signals so that at ∆S2

(D) > 2.1 we shall say that two models are
distinguishable. Note that ∆S2

(D) minimizes near the correct value of Λ, and that moreover, the
value of ∆PQ can be distinguished as a non-zero value up to ∼ ±100 GeV. The small shaded area
just outside the dashed box is absent when SM background is turned off.

between all single messenger F-theory models and a single messenger F-theory GUT model
with Λ = 1.44 × 105 GeV and ∆PQ = 164 GeV. Note in particular that the density plot
minimizes at a particular value of Λ, and that furthermore, there is a lower bound to the
value of ∆PQ in the region where ∆S2

(D) < 2.3. We therefore conclude that even at 5 fb−1,
it is possible to distinguish single messenger models from multiple messenger models, and
moreover, once the number of messengers has been determined, to extract the value of Λ,
and a crude bound on ∆PQ.
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Figure 26. Density plot of ∆S2
(D) defined by the signature list in table 4 of subsection 4.1 at 5 fb−1

of simulated data comparing F-theory GUTs with N5 = 1 and Λ = 1.28×105 GeV, but with varying
values of the PQ deformation parameter. Here, we have used a rough notion of distinguishability
based on 99% confidence and 13 signals so that at ∆S2

(D) > 2.1 we shall say that two models
are distinguishable. This plot illustrates that ∆S2

(D) minimizes in a neighborhood of the region

∆(1)
PQ = ∆(2)

PQ. Note in addition that the determination of ∆PQ becomes more accurate at larger
values of the PQ deformation.

4.3 Determining ∆PQ at 5 fb−1 and 50 fb−1

To completely distinguish between F-theory GUTs and a generic mGMSB model, we next
turn to the determination of ∆PQ. As opposed to the discrete parameter N5 and the
gaugino mass unification scale Λ, the dependence of the mass spectrum on the parameter
∆PQ is somewhat smaller. In particular, in the case of multiple messenger models, the
most pronounced effect of the PQ deformation only occurs in a regime of parameter space
where the stau is already the NLSP. Since the primary focus of our current analysis is on
the more difficult case of a bino NLSP, we shall therefore restrict attention to the single
messenger case.

In order to determine whether it is possible to extract the value of ∆PQ, we computed
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the value of ∆S2
(D) between any two F-theory GUT models with the same values for N5

and Λ. As an illustrative example, we considered in detail the case of N5 = 1 and Λ =
1.28×105 GeV. Plotting the value of ∆S2

(D) as a function of the PQ deformation parameter

of the two models, ∆(1)
PQ and ∆(2)

PQ, we find that at 5 fb−1 of simulated data, ∆S2
(D) achieves

a minimum over a somewhat broad range of values. See figure 26 for a plot of ∆S2
(D)

at 5 fb−1 of integrated luminosity. This figure also illustrates that although this range is
somewhat broad at low values of ∆PQ, with an error on the order of ∼ ±100 GeV, at
larger values of ∆PQ, the region with ∆S2

(D) < 2.1 occurs over a smaller range of values.
We therefore conclude that it is indeed possible to distinguish between models with very
low ∆PQ and very large ∆PQ. Increasing the luminosity allows for further refinements
in the determination of ∆PQ. Figure 27 illustrates that as a function of the two PQ
deformations, the value of ∆S2

(D) at 50 fb−1 allows us to determine the value of ∆PQ on
the order of ∼ ±10 GeV.4

5 Conclusions

In this paper we have analyzed the extent to which with a relatively low integrated lu-
minosity of 5 fb−1 how well the LHC can distinguish F-theory GUTs from other scenarios
with an MSSM spectrum. Focussing on the case of F-theory GUTs with a bino NLSP, we
have used a footprint analysis to determine signatures of potential interest. We have found
that collider signatures with multijets plus missing energy, as well as b-jets and taus are
typically able to distinguish this scenario from mSUGRA models with small A-terms and
from low scale minimal GMSB scenarios. In addition, single messenger F-theory GUTs
can be distinguished from mSUGRA models with large A-terms. We have also found that
mSUGRA models with large A-terms can potentially mimic the signatures of multiple mes-
senger F-theory GUTs with a bino NLSP. With 5 fb−1 of integrated luminosity, we find
that these models can only be distinguished from large A-term mSUGRA models in a small
range of F-theory GUT parameter space.

Focusing on just F-theory GUTs, we have also examined how well collider signatures
can be used to extract the defining parameters of the model, given by the number of
messengers N5, the characteristic mass scale of minimal gauge mediation Λ, and the stringy
PQ deformation parameter ∆PQ. We have found that it is typically possible to distinguish
between single and multiple messenger F-theory GUTs, although due to the similarities
in the soft parameters, distinguishing between two and three messenger models appears
more challenging. We have also seen that once the number of messengers has been fixed,
extracting the value of Λ is quite straightforward. More importantly, we have also seen
that a distinctively stringy feature of F-theory GUTs corresponding to a deformation away
from a minimal gauge mediation scenario has observable consequences. Indeed, with 5 fb−1

of integrated luminosity, it is possible to distinguish the value of this parameter up to
∼ ±80 GeV, while for 50 fb−1, this distinguishability typically improves to ∼ ±10 GeV.

One of the advantages of the footprint method is that rather than performing a global
fit to the data, specifying particular signatures which are sensitive to characteristics of a

4For simplicity, we have estimated the SM background at 50 fb−1 by simply scaling up by a factor of 10

the SM background at 5 fb−1 of integrated luminosity.
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Figure 27. Density plot of ∆S2
(D) defined by the signature list in table 4 of subsection 4.1 at 50 fb−1

of simulated data comparing F-theory GUTs with N5 = 1 and Λ = 1.28×105 GeV, but with varying
values of the PQ deformation parameter. Here, we have used a rough notion of distinguishability
based on 99% confidence and 13 signals so that at ∆S2

(D) > 2.1 we shall say that two models
are distinguishable. This plot illustrates that ∆S2

(D) minimizes in a neighborhood of the region

∆(1)
PQ = ∆(2)

PQ. As opposed to the case of 5 fb−1 of simulated data shown in figure 26, at increased
luminosity, it is possible to extract more detailed information about the PQ deformation.

class of models provides a relatively simple methodology for distinguishing between broad
classes of models. Using the footprint as a sieve for various models, we have seen that in
tandem with more quantitative measures, it is possible to distinguish F-theory GUTs from
other well-motivated models with an MSSM spectrum. On the other hand, it would of
course be of interest to analyze a global chi-square fit to a given model by including a large
class of binned PT distributions, and other similar observables. Utilizing the entire class
of such observables, a given F-theory GUT will define a vector in a very high-dimensional
vector space. Performing a fit to such models, it would be important to ascertain the level
of resolution expected in parameters such as the PQ deformation.

In this paper we have primarily focussed on signatures obtained which can be ob-
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tained from the LHC with low integrated luminosity. Performing a similar study with high
luminosity would certainly be very interesting. First, this would allow us to distinguish
F-theory GUTs from other models more cleanly, with more available signatures and bet-
ter statistics. Second, it would also allow us to study the potential for performing mass
reconstruction of superpartners. This would provide a more direct verification of the mass
spectrum of F-theory GUTs, and would in particular directly probe the effects of the PQ
deformation. Of course, for future study, improved signal and background simulation is
certainly necessary in order to confront real LHC data.

In addition, while our analysis has primarily focussed on determining a class of signa-
tures which can distinguish F-theory GUTs from other models, our explanation for why
these particular signals are effective in discriminating between various models was based
on a somewhat heuristic analysis of the spectrum and branching fractions. It would be
interesting to perform a more systematic simulation study to determine whether other po-
tentially interesting signatures can be extracted. For example, the angular distribution of
electrons and muons (or also the somewhat different case of taus) could potentially provide
another window into the physics of F-theory GUTs.

Although we have focussed on the case of F-theory GUTs with a bino NLSP, the case
of stau NLSP scenarios is also possible, especially in the case of multiple messenger models.
We have focussed on the bino NLSP case because it does not contain as striking a signature
as a quasi-stable stau. Nevertheless, it would be interesting to explore in greater detail
this regime of F-theory GUTs using the footprint method.
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A Benchmark mSUGRA scans

In this appendix we describe the mSUGRA parameter scan and the mSUGRA models
studied in our comparison with F-theory GUTs. We recall that such models are specified
by the parameters M1/2, m0, A and a choice of tanβ. For simplicity, we have primarily
restricted our interest to models where the colored sparticle sector has similar masses to
the case of F-theory GUTs. We first describe the scan performed over mSUGRA models
with small A-term. We have considered the following range of parameters:

• M1/2 = 400− 600

• m0 = M1/2(2.5 + ε), with −0.3 . ε . −0.3

• A = 0− 400
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• tanβ = 2− 47.

We note that in the above scan we have correlated the squark mass with the gluino mass,
allowing it to have a small amount of variation parameterized by ε. In this scan, we have
generated 180 mSUGRA models, which we shall refer to as small A-term mSUGRA models
in our comparison with F-theory GUT models.

In the above scan, we have restricted our attention to models with small A-terms. It is
also of interest to study mSUGRA models with large A-terms. When the A-term is large,
there will be some qualitative differences in the mass spectrum. Most important is the fact
that due to the large trilinear couplings, the lightest stau can now have mass in between
that of χ̃0

1 and χ̃0
2, much as in F-theory GUTs with a bino NLSP. For this reason, we have

also performed a scan over mSUGRA models with large A-term:

• M1/2 = 400− 600

• m0 = M1/2(2.5 + ε), with −1.5 . ε . 0.5

• A = 0− 3000

• tanβ = 2− 50,

We have generated a total of 13728 such models, of which 255 models satisfy the stau
mass condition mχ̃0

1
< mτ̃1 < mχ̃0

2
and the Higgs mass limit mh > 114 GeV. Both of these

conditions significantly constrain the allowed parameter space. This subset of mSUGRA
models are referred to as the large A-term mSUGRA models in our comparison with F-
theory GUT models.

B Benchmark low scale mGMSB with stau NLSP scans

For the low scale mGMSB models, we focus on the case with τ̃ NLSP. In this case, the
lightest stau will decay inside the detector giving rise to missing ET signatures. Because
of the generic presence of taus in the events, this class of models can in principal mimic
F-theory GUTs with a missing ET signal, corresponding to the case of F-theory GUTs
with a bino NLSP.

In this appendix we describe the scan over low messenger scale mGMSB models we
have performed. To generate a scan of such models, we vary the parameters N5, Λ, tanβ
of mGMSB scenarios. For simplicity, we fix the messenger scale Mmess to a low energy
scale, since it only changes the sparticle mass spectrum logarithmically. The scan we have
performed comprises the following range of parameters:

• N5 = 1

– Mmess = 2× 105 GeV

– Λ = (1.2− 1.92)× 105 GeV with step size 8× 103 GeV

• N5 = 2
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– Mmess = 1.2× 105 GeV

– Λ = (6.5− 11)× 104 GeV with step size 5× 103 GeV

• N5 = 3

– Mmess = 1.2× 105 GeV

– Λ = (4.5− 7.2)× 104 GeV with step size 3× 103 GeV

• for all of these cases, tanβ ∼ 2− 50 with step size 2.

In the above scan, the lower limit on Λ corresponds to the Higgs mass boundmh > 114 GeV,
and the upper limit corresponds to the discovery limit for 5 fb−1. Of the 750 low scale
mGMSB models generated this way, 433 of these have a stau NLSP.

C Signature list

In this appendix we provide a list of the 103 signatures used in our footprint analysis.
Most of the signatures are based on the inclusive 2 jet and 4 jet plus missing ET selections
as listed in table 1 of subsection 3.1. The counts of events of these two selections are
denoted by ≥ 2jets(PT > 150, 100) and ≥ 4jet(PT > 100, 50, 50, 50) respectively. These
two selections are further divided into subsets according to the number of leptons, taus
and b-jets. The selection criteria are given below:

• leptons: 0l, ≥ 1l, ≥ 2l, opposite-sign 2l (OSDL) and same-sign 2l (SSDL).

• taus: 0τ , ≥ 1τ , ≥ 2τ , opposite-sign 2τ (OSDT) and same-sign 2τ (SSDT).

• b-jets: 0b, ≥ 1b, ≥ 2b and ≥ 3b

• leptons + b-jets: 0l0b, 0l ≥ 1b, 0l ≥ 2b, ≥ 1l0b, ≥ 1l ≥ 1b, ≥ 1l ≥ 2b, ≥ 2l0b

• taus + b-jets: 0τ0b, 0τ ≥ 1b, 0τ ≥ 2b, ≥ 1τ0b, ≥ 1τ ≥ 1b, ≥ 1τ ≥ 2b, ≥ 2τ0b

• where we used two different PT cuts for each object:

– PT > 10,40 GeV for lepton and tau

– PT > 50,100 GeV for b-jet.

Additional signatures include some variations of the selection criteria (if not specified 6ET >
100 GeV and Meff > 1200), which are listed below:

• ≥ 6 jets (PT > 100, 100, 20, 20, 20, 20), 6ET > 200 GeV

• ≥ 6 jets (PT > 100, 100, 100, 100, 20, 20)

• ≥ 1τ(PT > 40), ≥ 2jets(PT > 80)

• ≥ 1τ(PT > 40), ≥ 4jets(PT > 40)
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• ≥ 1τ(PT < 40), ≥ 4jets(PT > 40), 6ET > 150 GeV

• ≥ 1τ(PT < 40), ≥ 4jets(PT > 40), 6ET > 150 GeV

• ≥ 2jets(PT > 350), 6ET > 0.2Meff

• ≥ 4jets(PT > 250, 250, 150, 150), 6ET > 0.1Meff

• ≥ 6jets(PT > 150, 150, 100, 100, 50, 50)

The last set of signatures are based on [43], where the base cut is given by 6ET > 150 GeV
and Meff > 600 GeV.

• 0l(PT > 20),≤ 4jets(PT > 50), Emiss
T > 500 GeV

• 0l(PT > 20),≤ 4jets(PT > 50), Meff > 1500 GeV

• ≥ 1l(PT > 20), ≤ 4jets(PT > 50), 6ET > 0.2Meff and Meff > 1400 GeV

• 0l(PT > 20),≥ 5jets(PT > 50), Meff > 1200 GeV

• 0l(PT > 20),≥ 5jets(PT > 50), 4th hardest jet PT > 100 GeV

• 0l(PT > 20),≥ 5jets(PT > 50), 0.15 < rjet < 0.5

• 0l(PT > 20),≥ 5jets(PT > 50), 0.5 < rjet < 1.0

• 0l(PT > 20),≥ 5jets(PT > 50), 0.05 < Emiss
T /Meff < 0.35

• ≥ 1l(PT > 20),≥ 5jets(PT > 50), Meff > 1350 GeV

• ≥ 1l(PT > 20),≥ 5jets(PT > 50), 4th hardest jet PT > 100 GeV

• ≥ 1l(PT > 20),≥ 5jets(PT > 50), hardest lepton PT > 60 GeV

• ≥ 1l(PT > 20),≥ 5jets(PT > 50), 0.05 < 6ET /Meff < 0.35

• ≥ 1τ(PT > 20),≥ 5jets(PT > 50), Meff > 1350 GeV

• ≥ 1τ(PT > 20),≥ 5jets(PT > 50), 4th hardest jet PT > 100 GeV

• ≥ 1τ(PT > 20),≥ 5jets(PT > 50), hardest tau PT > 60 GeV

• ≥ 1τ(PT > 20),≥ 5jets(PT > 50), 0.05 < 6ET /Meff < 0.35

For all 103 signatures, we have imposed the cut on transverse sphericity ST > 0.2. In the
above signature, the value rjet is given as a function of the jet PT ’s as:

rjet ≡
P jet3
T + P jet4

T

P jet1
T + P jet2

T

, (C.1)

where P jeti
T is the transverse momentum of the i-th hardest jet in the event. For this

signature we require at least three jets with PT > 200 GeV.
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D PGS trigger

In our simulation, we have used the PGS4 default detector configuration and cone jet algo-
rithm with a cone size 0.5. In addition, the PGS loose b-tagging is used, which corresponds
to a tagging probability near 0.5 in the central region for high energy jets. To reduce the
number of SM background events, we choose the PGS triggers with high thresholds:

• Inclusive isolated lepton (e,µ) 180 GeV

• Lepton plus jet (130 GeV, 200 GeV)

• Isolated dileptons (µµ,ee) 60 GeV

• Dileptons(µµ,ee) plus jet (45 GeV, 150 GeV)

• Isolated dileptons (eµ) 30 GeV

• Isolated lepton (µ,e) plus isolated tau (45 GeV, 60 GeV)

• Isolated ditau 60 GeV

• Inclusive isolated photon 80 GeV

• Isolated diphoton 40 GeV

• Inclusive 6ET 200 GeV

• Inclusive single-jet 1000 GeV

• Jet plus 6ET (300 GeV, 125 GeV)

• Accoplanar jet and 6ET (150 GeV, 80 GeV, 1 < ∆φ < 2)

• Accoplanar dijets (400 GeV, ∆φ < 2)

E PQ deformation and Ditau mass distribution

In this appendix we present a general discussion of the prospects of using the ditau mass
distribution as an additional means of probing the PQ deformation in F-theory GUTs with
a bino NLSP. We find that for given N5 and Λ, the edge of the ditau mass distribution is
sensitive to the PQ deformation. Interestingly, for F-theory GUTs with N5 = 2, 3, measur-
ing the edge of the ditau mass distribution will uniquely determine the PQ deformation. For
the case with N5 = 1, the PQ deformation can be determined up to a two-fold degeneracy.
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Figure 28. Endpoint of the opposite-sign ditau invariant mass distribution as a function of the
PQ deformation parameter ∆PQ for F-theory GUTs with a bino NLSP. From top to bottom, the
two plots are for N5 = 1, 2 respectively. The case of N5 = 3 is similar to N5 = 2. Note that
in contrast to the case of a single messenger model, for two and three messengers, the endpoint
decreases monotonically as a function of ∆PQ.
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When the bino is the NLSP, the relative masses of the lightest stau and two lightest
neutralinos obey the relation:

meχ(0)
1

< meτ1 < meχ(0)
2

. (E.1)

In this case, the decay chain:

χ̃
(0)
2 → τ̃±1 τ

∓ → χ̃
(0)
1 τ±τ∓ (E.2)

will generate events with opposite sign taus. If the τ+τ− mass distribution could be
measured directly, it would show a sharp kinematical edge

(mmax
τ+τ−)2 ≡

(
m2eχ(0)

2

−m2eτ1
)(

m2eτ1 −m2eχ(0)
1

)
m2eτ1 . (E.3)

However in practice, this edge structure gets smeared out by the missing neutrino from
the tau decay. In addition, there will be a large background under the edge due to the
fake taus from jets as well as taus from the chargino decay χ±1 → τ̃±ν. In spite of these
potential complications, this edge can be experimentally measured with an estimated 10%
error for a few tens of fb−1 integrated luminosity [41].

With this in mind, we now show that the endpoint of the ditau invariant mass distri-
bution is is sensitive to the PQ deformation. Scanning over models with different values of
∆PQ, figure 28 shows that mmax

τ+τ− is a non-trivial function of ∆PQ. Since the parameter Λ
and N5 are relatively easy to determine, we shall take them as fixed in the following dis-
cussion. For the one messenger case, there is a one-to-one correspondence between mmax

τ+τ−

and ∆PQ in the very large ∆PQ region, but generally shows a two-fold degeneracy between
small and large ∆PQ. In this case, the value of mmax

τ+τ− cannot by itself be used to determine
the PQ deformation, and requires supplementary observables, such as PT distributions, to
the resolve the degeneracy. However, for the two and three messenger cases, there is al-
ways a one-to-one correspondence between the value of mmax

τ+τ− and ∆PQ. This makes
the ditau invariant mass edge an effective observable for probing the PQ deformation in
F-theory GUTs.

In the following, we shall not focus on the concrete extraction of the ditau invariant
mass edge from the simulated data. Instead, we focus on the analytic dependence of
mmax
τ+τ− on ∆PQ. As a rough approximation, the PQ deformation can simply be added

as an overall shift to meτ1 . Letting m̂eτ1 denote the lightest stau mass in the absence of
the PQ deformation, the endpoint of the ditau invariant mass distribution is given by
the approximation:

(mmax
τ+τ−)2 ∼

(
m2eχ(0)

2

− m̂2eτ1 + ∆2
PQ

)(
m̂2eτ1 −∆2

PQ −m2eχ(0)
1

)
m̂2eτ1 −∆2

PQ

(E.4)

= m2eχ(0)
2

+m2eχ(0)
1

−
m2eχ(0)

2

m2eχ(0)
1

m̂2eτ1 −∆2
PQ

−
(
m̂2eτ1 −∆2

PQ

)
(E.5)

= m̂2eτ1
(
A− B

1− x
− (1− x)

)
(E.6)
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where we have introduced the parameters:

A ≡
m2eχ(0)

2

+m2eχ(0)
1

m̂2eτ1 (E.7)

B ≡
m2eχ(0)

2

m2eχ(0)
1

m̂4eτ1 (E.8)

x ≡
∆2
PQ

m̂2eτ1 . (E.9)

We now determine the behavior of (mmax
τ+τ−)2 as a function of x as x ranges from zero

(∆PQ = 0) to 1 (∆PQ = m̂eτ1). To this end, we now show that depending on the initial
placement of the lightest stau mass, the value of (mmax

τ+τ−)2 can either increase, or decrease.
Note, however, that at x = 1, the value of (mmax

τ+τ−)2 vanishes. The value of (mmax
τ+τ−)2 will

increase provided a local maximum is present between x = 0 and x = 1. The function
(mmax

τ+τ−)2(x) possesses a critical point satisfying the condition:

x∗ = 1−
√
B = 1−

meχ(0)
2

meχ(0)
1

m̂2eτ1 . (E.10)

Computing the second derivative of (mmax
τ+τ−)2(x) with respect to x, it follows that this

corresponds to a local maximum for the function. In other words, for x < x∗, (mmax
τ+τ−)2(x)

increases, while for x > x∗, (mmax
τ+τ−)2(x) decreases.

This local maximum will only be attained in the physical range of interest when 0 <
x∗ < 1, or:

0 < m̂2eτ1 −meχ(0)
2

meχ(0)
1

< m̂2eτ1 . (E.11)

While the second inequality is indeed always satisfied, the first inequality requires the
geometric mean of meχ(0)

2

and meχ(0)
1

to be less than m̂eτ1 . When this inequality is not

satisfied so that x∗ < 0, it follows that (mmax
τ+τ−)2(x) is always a decreasing function over

the physically acceptable range of values for ∆PQ. In the case where a local maximum is
achieved, there is a potential degeneracy in the location of the endpoint. For large enough
values of the PQ deformation, however, there is typically no degeneracy because there is
a single local maximum and the endpoint must vanish at the point where the stau and
bino masses become degenerate. See figure 28 for plots of the endpoint for representative
F-theory GUTs with N5 = 1, 3 vector-like pairs of messengers. These plots illustrate that
the relative spacing between the lightest stau and the two lightest neutralinos can produce
qualitatively different ∆PQ dependence.

F Miscellaneous plots

In this appendix we collect additional plots of potential interest.
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Figure 29. Plot of the mass spectrum of an F-theory GUT with N5 = 3, Λ = 4.5 × 104 GeV,
and minimal (red, left part of each column) and maximal (blue, right part of each column) PQ
deformation.
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Figure 31. Contour plot of the value of ∆P 2 obtained by fixing a particular value of Λ and
∆PQ of an F-theory GUT model with N5 = 3, and minimizing with respect to all small A-term
mSUGRA models. We adopt a rough criterion for theoretical distinguishability specified by the
requirement that ∆P 2 > 0.01. By inspection, ∆P 2 is greater than 0.2, indicating that such models
are distinguishable at the theoretical level from F-theory GUTs.
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Figure 32. Density plot of ∆S2
(A) defined by the signature list in table 2 of subsection 3.1 comparing

the minimal value of a given N5 = 3 F-theory GUT model with a scan over small A-term mSUGRA
models. The signals used are obtained with 5 fb−1 of simulated LHC data. Here, we have used a
rough notion of distinguishability based on 99% confidence and 10 signals so that at ∆S2

(A) > 2.3
we shall say that two models are distinguishable. By inspection, for most of the plot, it is possible
to distinguish between F-theory GUTs and mSUGRA models. See figure 9 in section 3 for a similar
plot in the case of N5 = 1 F-theory GUTs.
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Figure 33. Contour plot of the value of ∆P 2 obtained by fixing a particular value of Λ and ∆PQ of
an F-theory GUT model with N5 = 3, and minimizing with respect to all large A-term mSUGRA
models. We adopt a rough criterion for theoretical distinguishability specified by the requirement
that ∆P 2 > 0.01. By inspection, ∆P 2 is greater than 0.05. This is to be contrasted with the level
of distinguishability found for small A-term mSUGRA models where ∆P 2 is greater than 0.15.
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Figure 34. Density plot of ∆S2
(A) defined by the signature list in table 2 of subsection 3.1 comparing

the minimal value of a given N5 = 2 F-theory GUT model with a scan over large A-term mSUGRA
models. The signals used are obtained with 5 fb−1 of simulated LHC data. Here, we have used a
rough notion of distinguishability based on 99% confidence and 10 signals so that at ∆S2

(A) > 2.3
we shall say that two models are distinguishable. The plot shows the minimal value of ∆S2 for a
fixed F-theory GUT point. This plot shows that for this class of signatures, the models are only
distinguishable at larger values of Λ.

– 66 –



J
H
E
P
1
0
(
2
0
0
9
)
0
3
9

45 000 50 000 55 000 60 000 65 000 70 000

20

40

60

80

100

L HGeVL

D
PQ
HG

eV
L

0

³ 2.3

DS2 ³ 2.3

mΤ�1- m
Χ
� 0

1
< 10 GeV

Figure 35. Density plot of ∆S2
(A) defined by the signature list in table 2 of subsection 3.1 comparing

the minimal value of a given N5 = 3 F-theory GUT model with a scan over large A-term mSUGRA
models. The signals used are obtained with 5 fb−1 of simulated LHC data. Here, we have used a
rough notion of distinguishability based on 99% confidence and 10 signals so that at ∆S2

(A) > 2.3
we shall say that two models are distinguishable. This plot shows that for this class of signatures,
the models are only distinguishable at small values of Λ.
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Figure 36. Contour plot of the value of ∆P 2 obtained by fixing a particular value of Λ and ∆PQ of
an F-theory GUT model with N5 = 3, and minimizing with respect to all low scale minimal GMSB
models with a stau NLSP. We adopt a rough criterion for theoretical distinguishability specified by
the requirement that ∆P 2 > 0.01. By inspection, ∆P 2 is greater than 0.15, indicating that such
models are distinguishable at the theoretical level from F-theory GUTs.
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Figure 37. Contour plot of ∆P 2 between a fixed F-theory GUT model with N5 = 1, Λ =
1.28 × 105 GeV and ∆PQ = 222 GeV and three messenger F-theory GUT models. We adopt a
rough criterion for theoretical distinguishability specified by the requirement that ∆P 2 > 0.01.
This figure shows that ∆P 2 minimizes in the vicinity of a small patch. However, it should be noted
that there is no contour for ∆P 2 = 0.03 because the resulting scan typically saturates above this
value. This is in accord with the fact that the fixed F-theory GUT and the models scanned have a
different number of messenger fields.
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